Abstract

A Fabry–Perot etalon was coupled to a Czerny–Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5 m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous-source Hg lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to the observed splitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying helium atmospheric pressures. The high performance, low cost, and compact footprint make this system highly competitive with 2 m double-pass Czerny–Turner spectrometers.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001).
    [CrossRef]
  2. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
    [CrossRef]
  3. L. A. King, I. B. Gornushkin, D. Pappas, B. W. Smith, and J. D. Winefordner, “Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy,” Spectrochim. Acta B 54, 1771–1781 (1999).
    [CrossRef]
  4. H. Liu, A. Quentmeier, and K. Niemax, “Diode laser absorption measurement of uranium isotope ratios in solid samples using laser ablation,” Spectrochim. Acta B 57, 1611–1623 (2002).
    [CrossRef]
  5. A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption spectrometry,” Spectrochim. Acta B 56, 45–55 (2001).
    [CrossRef]
  6. X. K. Shen and Y. F. Lu, “Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 47, 1810–1815 (2008).
    [CrossRef]
  7. B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B 54, 943–958(1999).
    [CrossRef]
  8. W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma: basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
    [CrossRef]
  9. C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
    [CrossRef]
  10. F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
    [CrossRef]
  11. T. E. Economou, “Application of radioactive sources in analytical instruments for planetary exploration,” Appl. Radiat. Isot. 68, 542–545 (2010).
    [CrossRef]
  12. S. A. Harkins, M. S. Appold, B. K. Nelson, A. M. Brewer, and I. M. Groves, “Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the Flinders Ranges, South Australia,” Econ. Geol. 103, 353–364 (2008).
  13. T. Hosono, C. C. Su, K. Okamura, and M. Taniguchi, “Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan,” J. Geochem. Explor. 107, 1–8 (2010).
    [CrossRef]
  14. M. Kotarba, “Isotopic geochemistry and habitat of the natural gases from the Upper Carboniferous Zacler coal-bearing formation in the Nowa Ruda coal district (Lower Silesia, Poland),” Org. Geochem. 16, 549–560 (1990).
    [CrossRef]
  15. E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, N. W. Roland, and S. A. Sergeev, “New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010).
    [CrossRef]
  16. S. Ono, “Multiple-sulphur isotope biosignatures,” Space Sci. Rev. 135, 203–220 (2008).
    [CrossRef]
  17. E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010).
    [CrossRef]
  18. M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
    [CrossRef]
  19. A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
    [CrossRef]
  20. B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
    [CrossRef]
  21. S. Y. Yang, S. Y. Jiang, Y. H. Jiang, K. D. Zhao, and H. H. Fan, “Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China,” Sci. China Earth Sci. 53, 1411–1426 (2010).
    [CrossRef]
  22. T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of (PbI)-Pb-207: Part II,” Phys. Scr. 72, 200–202 (2005).
    [CrossRef]
  23. T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of Pb-207 I,” Phys. Scr. 71, 274–276 (2005).
    [CrossRef]
  24. T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure and isotope shifts in 461.9 nm forbidden line of PbI,” Opt. Appl. 36, 529–533 (2006).
  25. A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
    [CrossRef]
  26. A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
    [CrossRef]

2011 (2)

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
[CrossRef]

2010 (9)

E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010).
[CrossRef]

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
[CrossRef]

S. Y. Yang, S. Y. Jiang, Y. H. Jiang, K. D. Zhao, and H. H. Fan, “Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China,” Sci. China Earth Sci. 53, 1411–1426 (2010).
[CrossRef]

T. E. Economou, “Application of radioactive sources in analytical instruments for planetary exploration,” Appl. Radiat. Isot. 68, 542–545 (2010).
[CrossRef]

T. Hosono, C. C. Su, K. Okamura, and M. Taniguchi, “Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan,” J. Geochem. Explor. 107, 1–8 (2010).
[CrossRef]

E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, N. W. Roland, and S. A. Sergeev, “New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010).
[CrossRef]

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[CrossRef]

2008 (3)

X. K. Shen and Y. F. Lu, “Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 47, 1810–1815 (2008).
[CrossRef]

S. Ono, “Multiple-sulphur isotope biosignatures,” Space Sci. Rev. 135, 203–220 (2008).
[CrossRef]

S. A. Harkins, M. S. Appold, B. K. Nelson, A. M. Brewer, and I. M. Groves, “Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the Flinders Ranges, South Australia,” Econ. Geol. 103, 353–364 (2008).

2006 (2)

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure and isotope shifts in 461.9 nm forbidden line of PbI,” Opt. Appl. 36, 529–533 (2006).

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

2005 (2)

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of (PbI)-Pb-207: Part II,” Phys. Scr. 72, 200–202 (2005).
[CrossRef]

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of Pb-207 I,” Phys. Scr. 71, 274–276 (2005).
[CrossRef]

2002 (2)

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

H. Liu, A. Quentmeier, and K. Niemax, “Diode laser absorption measurement of uranium isotope ratios in solid samples using laser ablation,” Spectrochim. Acta B 57, 1611–1623 (2002).
[CrossRef]

2001 (2)

A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption spectrometry,” Spectrochim. Acta B 56, 45–55 (2001).
[CrossRef]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001).
[CrossRef]

1999 (2)

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B 54, 943–958(1999).
[CrossRef]

L. A. King, I. B. Gornushkin, D. Pappas, B. W. Smith, and J. D. Winefordner, “Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy,” Spectrochim. Acta B 54, 1771–1781 (1999).
[CrossRef]

1998 (1)

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma: basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

1990 (1)

M. Kotarba, “Isotopic geochemistry and habitat of the natural gases from the Upper Carboniferous Zacler coal-bearing formation in the Nowa Ruda coal district (Lower Silesia, Poland),” Org. Geochem. 16, 549–560 (1990).
[CrossRef]

Alloza, R.

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

Appold, M. S.

S. A. Harkins, M. S. Appold, B. K. Nelson, A. M. Brewer, and I. M. Groves, “Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the Flinders Ranges, South Australia,” Econ. Geol. 103, 353–364 (2008).

Belyatsky, B. V.

E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, N. W. Roland, and S. A. Sergeev, “New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010).
[CrossRef]

Bolshov, M.

A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption spectrometry,” Spectrochim. Acta B 56, 45–55 (2001).
[CrossRef]

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B 54, 943–958(1999).
[CrossRef]

Botheroyd, I. M.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001).
[CrossRef]

Bouchard, P.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Brewer, A. M.

S. A. Harkins, M. S. Appold, B. K. Nelson, A. M. Brewer, and I. M. Groves, “Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the Flinders Ranges, South Australia,” Econ. Geol. 103, 353–364 (2008).

Briand, A.

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma: basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

Camacho, A.

E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010).
[CrossRef]

Chakhmouradian, A. R.

E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010).
[CrossRef]

Cremers, D. A.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

DeLucia, F.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Doucet, F. R.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Drozdowski, R.

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure and isotope shifts in 461.9 nm forbidden line of PbI,” Opt. Appl. 36, 529–533 (2006).

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of Pb-207 I,” Phys. Scr. 71, 274–276 (2005).
[CrossRef]

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of (PbI)-Pb-207: Part II,” Phys. Scr. 72, 200–202 (2005).
[CrossRef]

Economou, T. E.

T. E. Economou, “Application of radioactive sources in analytical instruments for planetary exploration,” Appl. Radiat. Isot. 68, 542–545 (2010).
[CrossRef]

Effenberger, A. J.

A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
[CrossRef]

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[CrossRef]

Evans, C. P.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001).
[CrossRef]

Fan, H. H.

S. Y. Yang, S. Y. Jiang, Y. H. Jiang, K. D. Zhao, and H. H. Fan, “Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China,” Sci. China Earth Sci. 53, 1411–1426 (2010).
[CrossRef]

Gornushkin, I. B.

L. A. King, I. B. Gornushkin, D. Pappas, B. W. Smith, and J. D. Winefordner, “Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy,” Spectrochim. Acta B 54, 1771–1781 (1999).
[CrossRef]

Groves, I. M.

S. A. Harkins, M. S. Appold, B. K. Nelson, A. M. Brewer, and I. M. Groves, “Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the Flinders Ranges, South Australia,” Econ. Geol. 103, 353–364 (2008).

Halden, N. M.

E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010).
[CrossRef]

Harkins, S. A.

S. A. Harkins, M. S. Appold, B. K. Nelson, A. M. Brewer, and I. M. Groves, “Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the Flinders Ranges, South Australia,” Econ. Geol. 103, 353–364 (2008).

Henjes-Kunst, F.

E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, N. W. Roland, and S. A. Sergeev, “New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010).
[CrossRef]

Hosono, T.

T. Hosono, C. C. Su, K. Okamura, and M. Taniguchi, “Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan,” J. Geochem. Explor. 107, 1–8 (2010).
[CrossRef]

Jahn, B. M.

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Jiang, S. Y.

S. Y. Yang, S. Y. Jiang, Y. H. Jiang, K. D. Zhao, and H. H. Fan, “Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China,” Sci. China Earth Sci. 53, 1411–1426 (2010).
[CrossRef]

Jiang, Y. H.

S. Y. Yang, S. Y. Jiang, Y. H. Jiang, K. D. Zhao, and H. H. Fan, “Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China,” Sci. China Earth Sci. 53, 1411–1426 (2010).
[CrossRef]

Kamenetsky, V. S.

E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010).
[CrossRef]

King, L. A.

L. A. King, I. B. Gornushkin, D. Pappas, B. W. Smith, and J. D. Winefordner, “Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy,” Spectrochim. Acta B 54, 1771–1781 (1999).
[CrossRef]

Kosierb, R.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Kotarba, M.

M. Kotarba, “Isotopic geochemistry and habitat of the natural gases from the Upper Carboniferous Zacler coal-bearing formation in the Nowa Ruda coal district (Lower Silesia, Poland),” Org. Geochem. 16, 549–560 (1990).
[CrossRef]

Kwela, J.

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure and isotope shifts in 461.9 nm forbidden line of PbI,” Opt. Appl. 36, 529–533 (2006).

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of Pb-207 I,” Phys. Scr. 71, 274–276 (2005).
[CrossRef]

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of (PbI)-Pb-207: Part II,” Phys. Scr. 72, 200–202 (2005).
[CrossRef]

Larionov, A. N.

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Laserna, J. J.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Lawson, S.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001).
[CrossRef]

Lepekhina, Y. N.

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Lithgow, G.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Litvinovsky, B. A.

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Liu, D. Y.

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Liu, H.

H. Liu, A. Quentmeier, and K. Niemax, “Diode laser absorption measurement of uranium isotope ratios in solid samples using laser ablation,” Spectrochim. Acta B 57, 1611–1623 (2002).
[CrossRef]

Lopez-Moreno, C.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Lu, Y. F.

Martinez, M. A.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

Marzo, M. P.

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

Mezger, K.

B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
[CrossRef]

Mikhalsky, E. V.

E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, N. W. Roland, and S. A. Sergeev, “New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010).
[CrossRef]

Miziolek, A. W.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Montecinos, P.

B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
[CrossRef]

Nelson, B. K.

S. A. Harkins, M. S. Appold, B. K. Nelson, A. M. Brewer, and I. M. Groves, “Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the Flinders Ranges, South Australia,” Econ. Geol. 103, 353–364 (2008).

Niemax, K.

H. Liu, A. Quentmeier, and K. Niemax, “Diode laser absorption measurement of uranium isotope ratios in solid samples using laser ablation,” Spectrochim. Acta B 57, 1611–1623 (2002).
[CrossRef]

A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption spectrometry,” Spectrochim. Acta B 56, 45–55 (2001).
[CrossRef]

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B 54, 943–958(1999).
[CrossRef]

Okamura, K.

T. Hosono, C. C. Su, K. Okamura, and M. Taniguchi, “Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan,” J. Geochem. Explor. 107, 1–8 (2010).
[CrossRef]

Ono, S.

S. Ono, “Multiple-sulphur isotope biosignatures,” Space Sci. Rev. 135, 203–220 (2008).
[CrossRef]

Palanco, S.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Pappas, D.

L. A. King, I. B. Gornushkin, D. Pappas, B. W. Smith, and J. D. Winefordner, “Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy,” Spectrochim. Acta B 54, 1771–1781 (1999).
[CrossRef]

Petit, A.

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma: basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

Pietsch, W.

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma: basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

Presnyakov, S. L.

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Quentmeier, A.

H. Liu, A. Quentmeier, and K. Niemax, “Diode laser absorption measurement of uranium isotope ratios in solid samples using laser ablation,” Spectrochim. Acta B 57, 1611–1623 (2002).
[CrossRef]

A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption spectrometry,” Spectrochim. Acta B 56, 45–55 (2001).
[CrossRef]

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B 54, 943–958(1999).
[CrossRef]

Reguir, E. P.

E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010).
[CrossRef]

Reichow, M. K.

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Resano, M.

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

Roland, N. W.

E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, N. W. Roland, and S. A. Sergeev, “New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010).
[CrossRef]

Rose, J.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Ruiz, J.

B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
[CrossRef]

Sabsabi, M.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Saenz, C.

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

Scherer, E. E.

B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
[CrossRef]

Schulze, C.

B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
[CrossRef]

Scott, J. R.

A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
[CrossRef]

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[CrossRef]

Sergeev, S. A.

E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, N. W. Roland, and S. A. Sergeev, “New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010).
[CrossRef]

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Shen, X. K.

Smith, B. W.

L. A. King, I. B. Gornushkin, D. Pappas, B. W. Smith, and J. D. Winefordner, “Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy,” Spectrochim. Acta B 54, 1771–1781 (1999).
[CrossRef]

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B 54, 943–958(1999).
[CrossRef]

Smith, C. A.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

Sturgeon, R. E.

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

Su, C. C.

T. Hosono, C. C. Su, K. Okamura, and M. Taniguchi, “Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan,” J. Geochem. Explor. 107, 1–8 (2010).
[CrossRef]

Taniguchi, M.

T. Hosono, C. C. Su, K. Okamura, and M. Taniguchi, “Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan,” J. Geochem. Explor. 107, 1–8 (2010).
[CrossRef]

Tsygankov, A. A.

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Valencia, V. A.

B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
[CrossRef]

Vanhaecke, F.

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

Veirs, D. K.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

Walters, R. A.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

Wasowicz, T. J.

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure and isotope shifts in 461.9 nm forbidden line of PbI,” Opt. Appl. 36, 529–533 (2006).

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of Pb-207 I,” Phys. Scr. 71, 274–276 (2005).
[CrossRef]

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of (PbI)-Pb-207: Part II,” Phys. Scr. 72, 200–202 (2005).
[CrossRef]

Weber, B.

B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
[CrossRef]

Whitehouse, A. I.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001).
[CrossRef]

Willie, S.

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

Winefordner, J. D.

L. A. King, I. B. Gornushkin, D. Pappas, B. W. Smith, and J. D. Winefordner, “Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy,” Spectrochim. Acta B 54, 1771–1781 (1999).
[CrossRef]

Wright, J.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001).
[CrossRef]

Yang, L.

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

Yang, P.

E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010).
[CrossRef]

Yang, S. Y.

S. Y. Yang, S. Y. Jiang, Y. H. Jiang, K. D. Zhao, and H. H. Fan, “Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China,” Sci. China Earth Sci. 53, 1411–1426 (2010).
[CrossRef]

Young, J.

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001).
[CrossRef]

Zhao, K. D.

S. Y. Yang, S. Y. Jiang, Y. H. Jiang, K. D. Zhao, and H. H. Fan, “Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China,” Sci. China Earth Sci. 53, 1411–1426 (2010).
[CrossRef]

Anal. Bioanal. Chem. (1)

A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
[CrossRef]

Anal. Chim. Acta (1)

M. Resano, M. P. Marzo, R. Alloza, C. Saenz, F. Vanhaecke, L. Yang, S. Willie, and R. E. Sturgeon, “Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint,” Anal. Chim. Acta 677, 55–63 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Radiat. Isot. (1)

T. E. Economou, “Application of radioactive sources in analytical instruments for planetary exploration,” Appl. Radiat. Isot. 68, 542–545 (2010).
[CrossRef]

Econ. Geol. (1)

S. A. Harkins, M. S. Appold, B. K. Nelson, A. M. Brewer, and I. M. Groves, “Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the Flinders Ranges, South Australia,” Econ. Geol. 103, 353–364 (2008).

J. Anal. At. Spectrom. (2)

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006).
[CrossRef]

J. Geochem. Explor. (1)

T. Hosono, C. C. Su, K. Okamura, and M. Taniguchi, “Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan,” J. Geochem. Explor. 107, 1–8 (2010).
[CrossRef]

Mineral. Petrol. (1)

E. P. Reguir, A. Camacho, P. Yang, A. R. Chakhmouradian, V. S. Kamenetsky, and N. M. Halden, “Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS,” Mineral. Petrol. 100, 95–103 (2010).
[CrossRef]

Opt. Appl. (1)

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure and isotope shifts in 461.9 nm forbidden line of PbI,” Opt. Appl. 36, 529–533 (2006).

Org. Geochem. (1)

M. Kotarba, “Isotopic geochemistry and habitat of the natural gases from the Upper Carboniferous Zacler coal-bearing formation in the Nowa Ruda coal district (Lower Silesia, Poland),” Org. Geochem. 16, 549–560 (1990).
[CrossRef]

Phys. Scr. (2)

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of (PbI)-Pb-207: Part II,” Phys. Scr. 72, 200–202 (2005).
[CrossRef]

T. J. Wasowicz, R. Drozdowski, and J. Kwela, “Hyperfine structure study of several lines of Pb-207 I,” Phys. Scr. 71, 274–276 (2005).
[CrossRef]

Precambrian Res. (2)

B. Weber, E. E. Scherer, C. Schulze, V. A. Valencia, P. Montecinos, K. Mezger, and J. Ruiz, “U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico: geodynamic significance of Oaxaquia in a Rodinia realm,” Precambrian Res. 182, 149–162 (2010).
[CrossRef]

E. V. Mikhalsky, F. Henjes-Kunst, B. V. Belyatsky, N. W. Roland, and S. A. Sergeev, “New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications,” Precambrian Res. 182, 101–123 (2010).
[CrossRef]

Russ. Geol. Geophys. (1)

A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. K. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Y. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51, 972–994 (2010).
[CrossRef]

Sci. China Earth Sci. (1)

S. Y. Yang, S. Y. Jiang, Y. H. Jiang, K. D. Zhao, and H. H. Fan, “Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China,” Sci. China Earth Sci. 53, 1411–1426 (2010).
[CrossRef]

Sensors (1)

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors 10, 4907–4925 (2010).
[CrossRef]

Space Sci. Rev. (1)

S. Ono, “Multiple-sulphur isotope biosignatures,” Space Sci. Rev. 135, 203–220 (2008).
[CrossRef]

Spectrochim. Acta B (7)

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B 54, 943–958(1999).
[CrossRef]

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma: basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

L. A. King, I. B. Gornushkin, D. Pappas, B. W. Smith, and J. D. Winefordner, “Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy,” Spectrochim. Acta B 54, 1771–1781 (1999).
[CrossRef]

H. Liu, A. Quentmeier, and K. Niemax, “Diode laser absorption measurement of uranium isotope ratios in solid samples using laser ablation,” Spectrochim. Acta B 57, 1611–1623 (2002).
[CrossRef]

A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption spectrometry,” Spectrochim. Acta B 56, 45–55 (2001).
[CrossRef]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 821–830 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup of high-resolution LIBS. Plasma was created in reduced-pressure He environment. Light from the plasma was focused onto a fiber optic, which carried the light to the Fabry–Perot etalon, resolving the wavelengths into fringe patterns. The Czerny–Turner spectrometer dispersed the ring fringes transmitted from the Fabry–Perot etalon and projected them onto the ICCD camera.

Fig. 2.
Fig. 2.

Image of 313.2 nm doublet (right set of ring fringes) and 312.6 nm line (left set of ring fringes) from an Hg lamp. Only a portion of the ring fringes is seen here due to the 500 μm slit width of the spectrometer. Image color was inverted for publication.

Fig. 3.
Fig. 3.

Spectrum created from the 313.2 nm ring fringes in Fig. 2 by summing along the x axis (16 pixels) and plotting along the y axis (512 pixels).

Fig. 4.
Fig. 4.

Spectrum of the first set of ring fringes of the 313.2 nm doublet from the Hg lamp.

Fig. 5.
Fig. 5.

Image of 313.2 nm doublet (right set of middle ring fringes) and 312.6 nm line (left set of middle rings fringes) from LIBS of cinnabar. Only a portion of the ring fringes is seen here due to the 500 μm slit width of the spectrometer. The dim images to the left are from sulfur emission. Image color was inverted for publication.

Fig. 6.
Fig. 6.

Spectrum from part of the first set of ring fringes of the 313.2 nm doublet from LIBS of cinnabar.

Fig. 7.
Fig. 7.

FWHM of the 313.1844 nm line from LIBS of cinnabar versus the helium atmosphere pressure. The data point at 0 Torr He is the FWHM from the Hg lamp.

Metrics