Abstract

Taking advantage of the specific characteristics of a transversely excited atmospheric (TEA) CO2 laser, a sophisticated technique for the analysis of chromated copper arsenate (CCA) in wood samples has been developed. In this study, a CCA-treated wood sample with a dimension of 20mm×20mm and a thickness of 2 mm was attached in contact to a nickel plate (20mm×20mm×0.15mm), which functions as a subtarget. When the TEA CO2 laser was successively irradiated onto the wood surface, a hole with a diameter of approximately 2.5 mm was produced inside the sample and the laser beam was directly impinged onto the metal subtarget. Strong and stable gas plasma with a very large diameter of approximately 10 mm was induced once the laser beam had directly struck the metal subtarget. This gas plasma then interacted with the fine particles of the sample inside the hole and finally the particles were effectively dissociated and excited in the gas plasma region. By using this technique, high precision and sensitive analysis of CCA-treated wood sample was realized. A linear calibration curve of Cr was successfully made using the CCA-treated wood sample. The detection limits of Cr, Cu, and As were estimated to be approximately 1, 2, and 15mg/kg, respectively. In the case of standard LIBS using the Nd:YAG laser, the analytical intensities fluctuate and the detection limit was much lower at approximately one-tenth that of TEA CO2 laser.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Uhl, K. Loebe, and L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta B 56, 795–806 (2001).
    [CrossRef]
  2. A. I. Williams, “The use of atomic-absorption spectrophotometry for the determination of copper, chromium and arsenic in preserved wood,” Analyst 97, 104–110 (1972).
    [CrossRef]
  3. J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
    [CrossRef]
  4. Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
    [CrossRef]
  5. H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
    [CrossRef]
  6. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  7. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).
  8. M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta B 60, 1179–1185 (2005).
    [CrossRef]
  9. R. Krasniker, V. Bulatov, and I. ScHechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
    [CrossRef]
  10. K. Kagawa, T. J. Lie, R. Hedwig, S. N. Abdulmadjid, M. M. Suliyanti, and H. Kurniawan, “Subtarget effect on laser plasma generated by transversely excited atmospheric CO2 laser at atmospheric gas pressure,” Jpn. J. Appl. Phys. 39, 2643–2646 (2000).
    [CrossRef]
  11. A. M. Marpaung, R. Hedwig, M. Pardede, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures,” Spectrochim. Acta B 55, 1591–1599 (2000).
    [CrossRef]
  12. A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
    [CrossRef]
  13. A. Khumaeni, M. Ramli, Y. Deguchi, Y. I. Lee, N. Idris, K. H. Kurniawan, T. J. Lie, and K. Kagawa, “New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO2 laser-induced gas plasma,” Appl. Spectrosc. 62, 1344–1348 (2008).
    [CrossRef]
  14. A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, and H. Niki, “Rapid analyses of tiny amounts of powder samples using transversely excited atmospheric CO2 laser-induced helium gas plasma with the aid of high-vacuum silicon grease as a binder on a metal subtarget,” Appl. Spectrosc. 65, 236–241 (2011).
    [CrossRef]
  15. N. Idris, K. Kagawa, F. Sakan, K. Tsuyuki, and S. Miura, “Analysis of heavy metal pollution in soil using transversely excited atmospheric CO2 laser-induced plasma by trapping the soil in microstructured holes on metal subtargets,” Appl. Spectrosc. 61, 1344–1351 (2007).
    [CrossRef]
  16. J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).
  17. N. Idris, T. Kobayashi, M. M. Suliyanti, H. Kurniawan, T. J. Lie, Y. I. Lee, and K. Kagawa, “Utilization of confinement effect on solid organic sample in spectrochemical analysis using TEA CO2 laser induced plasma,” J. Korean Phys. Soc. 47, 256–262 (2005).
  18. T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method,” Reports of Hokkaido Research Institute, No. 308 (2009), pp. 33–39.
  19. T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method, Part II,” Reports of Hokkaido Research Institute, No. 310 (2011), pp. 31–38.

2011 (3)

J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
[CrossRef]

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, and H. Niki, “Rapid analyses of tiny amounts of powder samples using transversely excited atmospheric CO2 laser-induced helium gas plasma with the aid of high-vacuum silicon grease as a binder on a metal subtarget,” Appl. Spectrosc. 65, 236–241 (2011).
[CrossRef]

2008 (1)

2007 (2)

N. Idris, K. Kagawa, F. Sakan, K. Tsuyuki, and S. Miura, “Analysis of heavy metal pollution in soil using transversely excited atmospheric CO2 laser-induced plasma by trapping the soil in microstructured holes on metal subtargets,” Appl. Spectrosc. 61, 1344–1351 (2007).
[CrossRef]

Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
[CrossRef]

2005 (2)

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta B 60, 1179–1185 (2005).
[CrossRef]

N. Idris, T. Kobayashi, M. M. Suliyanti, H. Kurniawan, T. J. Lie, Y. I. Lee, and K. Kagawa, “Utilization of confinement effect on solid organic sample in spectrochemical analysis using TEA CO2 laser induced plasma,” J. Korean Phys. Soc. 47, 256–262 (2005).

2004 (1)

H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
[CrossRef]

2001 (2)

A. Uhl, K. Loebe, and L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta B 56, 795–806 (2001).
[CrossRef]

R. Krasniker, V. Bulatov, and I. ScHechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

2000 (2)

K. Kagawa, T. J. Lie, R. Hedwig, S. N. Abdulmadjid, M. M. Suliyanti, and H. Kurniawan, “Subtarget effect on laser plasma generated by transversely excited atmospheric CO2 laser at atmospheric gas pressure,” Jpn. J. Appl. Phys. 39, 2643–2646 (2000).
[CrossRef]

A. M. Marpaung, R. Hedwig, M. Pardede, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures,” Spectrochim. Acta B 55, 1591–1599 (2000).
[CrossRef]

1972 (1)

A. I. Williams, “The use of atomic-absorption spectrophotometry for the determination of copper, chromium and arsenic in preserved wood,” Analyst 97, 104–110 (1972).
[CrossRef]

Abdulmadjid, S. N.

K. Kagawa, T. J. Lie, R. Hedwig, S. N. Abdulmadjid, M. M. Suliyanti, and H. Kurniawan, “Subtarget effect on laser plasma generated by transversely excited atmospheric CO2 laser at atmospheric gas pressure,” Jpn. J. Appl. Phys. 39, 2643–2646 (2000).
[CrossRef]

Bulatov, V.

R. Krasniker, V. Bulatov, and I. ScHechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Crouch, S. R.

J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).

Deguchi, Y.

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

A. Khumaeni, M. Ramli, Y. Deguchi, Y. I. Lee, N. Idris, K. H. Kurniawan, T. J. Lie, and K. Kagawa, “New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO2 laser-induced gas plasma,” Appl. Spectrosc. 62, 1344–1348 (2008).
[CrossRef]

Frink, L. A.

J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
[CrossRef]

Goto, K.

Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
[CrossRef]

Hahn, D. W.

H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
[CrossRef]

Hart, J. A.

J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
[CrossRef]

Hedwig, R.

K. Kagawa, T. J. Lie, R. Hedwig, S. N. Abdulmadjid, M. M. Suliyanti, and H. Kurniawan, “Subtarget effect on laser plasma generated by transversely excited atmospheric CO2 laser at atmospheric gas pressure,” Jpn. J. Appl. Phys. 39, 2643–2646 (2000).
[CrossRef]

A. M. Marpaung, R. Hedwig, M. Pardede, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures,” Spectrochim. Acta B 55, 1591–1599 (2000).
[CrossRef]

Hosein, N.

H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
[CrossRef]

Idris, N.

Ingle, J. D.

J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).

Ishida, Y.

Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
[CrossRef]

Jacobi, G.

H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
[CrossRef]

Jambeck, J.

H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
[CrossRef]

Kagawa, K.

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, and H. Niki, “Rapid analyses of tiny amounts of powder samples using transversely excited atmospheric CO2 laser-induced helium gas plasma with the aid of high-vacuum silicon grease as a binder on a metal subtarget,” Appl. Spectrosc. 65, 236–241 (2011).
[CrossRef]

A. Khumaeni, M. Ramli, Y. Deguchi, Y. I. Lee, N. Idris, K. H. Kurniawan, T. J. Lie, and K. Kagawa, “New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO2 laser-induced gas plasma,” Appl. Spectrosc. 62, 1344–1348 (2008).
[CrossRef]

N. Idris, K. Kagawa, F. Sakan, K. Tsuyuki, and S. Miura, “Analysis of heavy metal pollution in soil using transversely excited atmospheric CO2 laser-induced plasma by trapping the soil in microstructured holes on metal subtargets,” Appl. Spectrosc. 61, 1344–1351 (2007).
[CrossRef]

N. Idris, T. Kobayashi, M. M. Suliyanti, H. Kurniawan, T. J. Lie, Y. I. Lee, and K. Kagawa, “Utilization of confinement effect on solid organic sample in spectrochemical analysis using TEA CO2 laser induced plasma,” J. Korean Phys. Soc. 47, 256–262 (2005).

A. M. Marpaung, R. Hedwig, M. Pardede, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures,” Spectrochim. Acta B 55, 1591–1599 (2000).
[CrossRef]

K. Kagawa, T. J. Lie, R. Hedwig, S. N. Abdulmadjid, M. M. Suliyanti, and H. Kurniawan, “Subtarget effect on laser plasma generated by transversely excited atmospheric CO2 laser at atmospheric gas pressure,” Jpn. J. Appl. Phys. 39, 2643–2646 (2000).
[CrossRef]

Khumaeni, A.

Kobayashi, T.

N. Idris, T. Kobayashi, M. M. Suliyanti, H. Kurniawan, T. J. Lie, Y. I. Lee, and K. Kagawa, “Utilization of confinement effect on solid organic sample in spectrochemical analysis using TEA CO2 laser induced plasma,” J. Korean Phys. Soc. 47, 256–262 (2005).

Krasniker, R.

R. Krasniker, V. Bulatov, and I. ScHechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

Kreuchwig, L.

A. Uhl, K. Loebe, and L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta B 56, 795–806 (2001).
[CrossRef]

Kubátová, A.

J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
[CrossRef]

Kurihara, K.

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, and H. Niki, “Rapid analyses of tiny amounts of powder samples using transversely excited atmospheric CO2 laser-induced helium gas plasma with the aid of high-vacuum silicon grease as a binder on a metal subtarget,” Appl. Spectrosc. 65, 236–241 (2011).
[CrossRef]

Kurniawan, H.

N. Idris, T. Kobayashi, M. M. Suliyanti, H. Kurniawan, T. J. Lie, Y. I. Lee, and K. Kagawa, “Utilization of confinement effect on solid organic sample in spectrochemical analysis using TEA CO2 laser induced plasma,” J. Korean Phys. Soc. 47, 256–262 (2005).

K. Kagawa, T. J. Lie, R. Hedwig, S. N. Abdulmadjid, M. M. Suliyanti, and H. Kurniawan, “Subtarget effect on laser plasma generated by transversely excited atmospheric CO2 laser at atmospheric gas pressure,” Jpn. J. Appl. Phys. 39, 2643–2646 (2000).
[CrossRef]

A. M. Marpaung, R. Hedwig, M. Pardede, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures,” Spectrochim. Acta B 55, 1591–1599 (2000).
[CrossRef]

Kurniawan, K. H.

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

A. Khumaeni, M. Ramli, Y. Deguchi, Y. I. Lee, N. Idris, K. H. Kurniawan, T. J. Lie, and K. Kagawa, “New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO2 laser-induced gas plasma,” Appl. Spectrosc. 62, 1344–1348 (2008).
[CrossRef]

Labbe, N.

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta B 60, 1179–1185 (2005).
[CrossRef]

Lee, Y. I.

A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, and H. Niki, “Rapid analyses of tiny amounts of powder samples using transversely excited atmospheric CO2 laser-induced helium gas plasma with the aid of high-vacuum silicon grease as a binder on a metal subtarget,” Appl. Spectrosc. 65, 236–241 (2011).
[CrossRef]

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

A. Khumaeni, M. Ramli, Y. Deguchi, Y. I. Lee, N. Idris, K. H. Kurniawan, T. J. Lie, and K. Kagawa, “New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO2 laser-induced gas plasma,” Appl. Spectrosc. 62, 1344–1348 (2008).
[CrossRef]

N. Idris, T. Kobayashi, M. M. Suliyanti, H. Kurniawan, T. J. Lie, Y. I. Lee, and K. Kagawa, “Utilization of confinement effect on solid organic sample in spectrochemical analysis using TEA CO2 laser induced plasma,” J. Korean Phys. Soc. 47, 256–262 (2005).

Lie, T. J.

A. Khumaeni, M. Ramli, Y. Deguchi, Y. I. Lee, N. Idris, K. H. Kurniawan, T. J. Lie, and K. Kagawa, “New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO2 laser-induced gas plasma,” Appl. Spectrosc. 62, 1344–1348 (2008).
[CrossRef]

N. Idris, T. Kobayashi, M. M. Suliyanti, H. Kurniawan, T. J. Lie, Y. I. Lee, and K. Kagawa, “Utilization of confinement effect on solid organic sample in spectrochemical analysis using TEA CO2 laser induced plasma,” J. Korean Phys. Soc. 47, 256–262 (2005).

K. Kagawa, T. J. Lie, R. Hedwig, S. N. Abdulmadjid, M. M. Suliyanti, and H. Kurniawan, “Subtarget effect on laser plasma generated by transversely excited atmospheric CO2 laser at atmospheric gas pressure,” Jpn. J. Appl. Phys. 39, 2643–2646 (2000).
[CrossRef]

Lie, Z. S.

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, and H. Niki, “Rapid analyses of tiny amounts of powder samples using transversely excited atmospheric CO2 laser-induced helium gas plasma with the aid of high-vacuum silicon grease as a binder on a metal subtarget,” Appl. Spectrosc. 65, 236–241 (2011).
[CrossRef]

Loebe, K.

A. Uhl, K. Loebe, and L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta B 56, 795–806 (2001).
[CrossRef]

Marpaung, A. M.

A. M. Marpaung, R. Hedwig, M. Pardede, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures,” Spectrochim. Acta B 55, 1591–1599 (2000).
[CrossRef]

Martin, M. Z.

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta B 60, 1179–1185 (2005).
[CrossRef]

Miura, S.

Miziolek, W.

W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).

Moskal, T. M.

H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
[CrossRef]

Niki, H.

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, and H. Niki, “Rapid analyses of tiny amounts of powder samples using transversely excited atmospheric CO2 laser-induced helium gas plasma with the aid of high-vacuum silicon grease as a binder on a metal subtarget,” Appl. Spectrosc. 65, 236–241 (2011).
[CrossRef]

Niri, V. H.

J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
[CrossRef]

Ohtani, H.

Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
[CrossRef]

Ona, T.

Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
[CrossRef]

Palleschi, V.

W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).

Pardede, M.

A. M. Marpaung, R. Hedwig, M. Pardede, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures,” Spectrochim. Acta B 55, 1591–1599 (2000).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Ramli, M.

Rials, T. G.

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta B 60, 1179–1185 (2005).
[CrossRef]

Sakan, F.

ScHechter, I.

R. Krasniker, V. Bulatov, and I. ScHechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).

Sedgeman, C. A.

J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
[CrossRef]

Smith, Z. T.

J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
[CrossRef]

Solo-Gabrielea, H. M.

H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
[CrossRef]

Sonoda, T.

Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
[CrossRef]

Štávová, J.

J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
[CrossRef]

Suliyanti, M. M.

N. Idris, T. Kobayashi, M. M. Suliyanti, H. Kurniawan, T. J. Lie, Y. I. Lee, and K. Kagawa, “Utilization of confinement effect on solid organic sample in spectrochemical analysis using TEA CO2 laser induced plasma,” J. Korean Phys. Soc. 47, 256–262 (2005).

K. Kagawa, T. J. Lie, R. Hedwig, S. N. Abdulmadjid, M. M. Suliyanti, and H. Kurniawan, “Subtarget effect on laser plasma generated by transversely excited atmospheric CO2 laser at atmospheric gas pressure,” Jpn. J. Appl. Phys. 39, 2643–2646 (2000).
[CrossRef]

Takahashi, T.

T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method,” Reports of Hokkaido Research Institute, No. 308 (2009), pp. 33–39.

T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method, Part II,” Reports of Hokkaido Research Institute, No. 310 (2011), pp. 31–38.

Tjia, M. O.

A. M. Marpaung, R. Hedwig, M. Pardede, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures,” Spectrochim. Acta B 55, 1591–1599 (2000).
[CrossRef]

Tjoeng, E.

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

Tomita, K.

T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method, Part II,” Reports of Hokkaido Research Institute, No. 310 (2011), pp. 31–38.

T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method,” Reports of Hokkaido Research Institute, No. 308 (2009), pp. 33–39.

Townsend, T. G.

H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
[CrossRef]

Tsuge, S.

Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
[CrossRef]

Tsuyuki, K.

Uhl, A.

A. Uhl, K. Loebe, and L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta B 56, 795–806 (2001).
[CrossRef]

Wakasugi, M.

T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method,” Reports of Hokkaido Research Institute, No. 308 (2009), pp. 33–39.

T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method, Part II,” Reports of Hokkaido Research Institute, No. 310 (2011), pp. 31–38.

Williams, A. I.

A. I. Williams, “The use of atomic-absorption spectrophotometry for the determination of copper, chromium and arsenic in preserved wood,” Analyst 97, 104–110 (1972).
[CrossRef]

Wullschleger, S. D.

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta B 60, 1179–1185 (2005).
[CrossRef]

Yokoi, H.

Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
[CrossRef]

Anal. Bioanal. Chem. (1)

A. Khumaeni, Z. S. Lie, H. Niki, K. H. Kurniawan, E. Tjoeng, Y. I. Lee, K. Kurihara, Y. Deguchi, and K. Kagawa, “Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm,” Anal. Bioanal. Chem. 400, 3279–3287 (2011).
[CrossRef]

Anal. Chim. Acta (1)

J. Šťávová, C. A. Sedgeman, Z. T. Smith, L. A. Frink, J. A. Hart, V. H. Niri, and A. Kubátová, “Method development for the determination of wood preservatives in commercially treated wood using gas chromatography—mass spectrometry,” Anal. Chim. Acta 702, 205–212 (2011).
[CrossRef]

Analyst (1)

A. I. Williams, “The use of atomic-absorption spectrophotometry for the determination of copper, chromium and arsenic in preserved wood,” Analyst 97, 104–110 (1972).
[CrossRef]

Appl. Spectrosc. (3)

J. Anal. Appl. Pyrolysis (1)

Y. Ishida, K. Goto, H. Yokoi, S. Tsuge, H. Ohtani, T. Sonoda, and T. Ona, “Direct analysis of phenolic extractives in wood by thermochemolysis—gas chromatography in the presence of tetrabutylammonium hydroxide,” J. Anal. Appl. Pyrolysis 78, 200–206 (2007).
[CrossRef]

J. Korean Phys. Soc. (1)

N. Idris, T. Kobayashi, M. M. Suliyanti, H. Kurniawan, T. J. Lie, Y. I. Lee, and K. Kagawa, “Utilization of confinement effect on solid organic sample in spectrochemical analysis using TEA CO2 laser induced plasma,” J. Korean Phys. Soc. 47, 256–262 (2005).

Jpn. J. Appl. Phys. (1)

K. Kagawa, T. J. Lie, R. Hedwig, S. N. Abdulmadjid, M. M. Suliyanti, and H. Kurniawan, “Subtarget effect on laser plasma generated by transversely excited atmospheric CO2 laser at atmospheric gas pressure,” Jpn. J. Appl. Phys. 39, 2643–2646 (2000).
[CrossRef]

Spectrochim. Acta B (4)

A. M. Marpaung, R. Hedwig, M. Pardede, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures,” Spectrochim. Acta B 55, 1591–1599 (2000).
[CrossRef]

A. Uhl, K. Loebe, and L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta B 56, 795–806 (2001).
[CrossRef]

M. Z. Martin, N. Labbe, T. G. Rials, and S. D. Wullschleger, “Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra,” Spectrochim. Acta B 60, 1179–1185 (2005).
[CrossRef]

R. Krasniker, V. Bulatov, and I. ScHechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

Waste Manag. (1)

H. M. Solo-Gabrielea, T. G. Townsend, D. W. Hahn, T. M. Moskal, N. Hosein, J. Jambeck, and G. Jacobi, “Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste Manag. 24, 413–424 (2004).
[CrossRef]

Other (5)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).

T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method,” Reports of Hokkaido Research Institute, No. 308 (2009), pp. 33–39.

T. Takahashi, K. Tomita, and M. Wakasugi, “Development of distinction process of CCA treated wood from house demolition using laser induced breakdown spectroscopy method, Part II,” Reports of Hokkaido Research Institute, No. 310 (2011), pp. 31–38.

J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Illustration of the gas plasma and the sample holder used in this study. (b) Illustration of the metal-assisted gas plasma system used for semi in situ analysis of wood samples at a recycle production factory.

Fig. 2.
Fig. 2.

Emission intensities of Ca II 393.3 nm taken from the hardwood sample and the softwood sample corresponding to the number of laser shots by using standard LIBS technique, in which Nd:YAG laser is employed.

Fig. 3.
Fig. 3.

Emission intensities of Ca II 393.3 nm taken from the hardwood sample and the softwood sample at the different positions on the sample surface by using standard LIBS technique, in which Nd:YAG laser is employed.

Fig. 4.
Fig. 4.

Emission intensities of Ca II 393.3 nm taken from the hardwood sample and the softwood sample corresponding to the number of laser shots by using the metal-assisted gas plasma technique, in which TEA CO2 laser is employed.

Fig. 5.
Fig. 5.

(a) Emission intensities of Ca II 393.3 nm taken from the hardwood sample and the softwood sample at the different positions on the sample surface by using the metal-assisted gas plasma technique, in which TEA CO2 laser is employed. (b) Photograph of the holes created inside the softwood sample after data acquisition of (a).

Fig. 6.
Fig. 6.

Emission spectra of (a) Cr, (b) Cu, and (c) As taken from the CCA preservative-treated wood by using standard LIBS technique, in which Nd:YAG laser is employed. The spectra were taken using 10 shots of laser irradiation and the laser energy was 60 mJ.

Fig. 7.
Fig. 7.

Emission spectra of (a) Cr, (b) Cu, and (c) As taken from the CCA preservative-treated wood by using the metal-assisted gas plasma technique, in which TEA CO2 laser is employed. The spectra were taken using 10 laser shots after 100 shots of laser pre-irradiation and the laser energy was 750 mJ.

Fig. 8.
Fig. 8.

Calibration curve of Cr contamination in the wood sample by using (a) the Nd:YAG laser, and (b) the TEA CO2 laser.

Metrics