Abstract

Laser induced breakdown spectroscopy (LIBS) was applied for the elemental analysis of the thin copper indium gallium diselenide (CuIn1xGaxSe2 [CIGS]) absorption layer deposited on Mo-coated soda-lime glass by the co-evaporation technique. The optimal laser and detection parameters for LIBS measurement of the CIGS absorption layer (1.23 μm) were investigated. The calibration results of Ga/In ratio with respect to the concentration ratios measured by x-ray fluorescence and inductively coupled plasma optical emission spectroscopy showed good linearity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
    [CrossRef]
  2. I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.
  3. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
    [CrossRef]
  4. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
    [CrossRef]
  5. L. Radziemski, “From laser to LIBS, the path of technology development,” Spectrochim. Acta B 57, 1109–1113 (2002).
  6. J. Sneddon and Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
    [CrossRef]
  7. K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
    [CrossRef]
  8. D. A. Cremers and L. J. Radzienski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  9. A. W. Mizioley, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University, 2006).
  10. R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry—a review,” Talanta 57, 425–451 (2002).
    [CrossRef]
  11. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
  12. P. Fichet, D. Menut, R. Brennetot, E. Vors, and A. Rivoallan, “Analysis by laser-induced breakdown spectroscopy of complex solids, liquids, and powders with an echelle spectrometer,” Appl. Opt. 42, 6029–6035 (2003).
    [CrossRef]
  13. J. M. Vadillo and J. J. Laserna, “Laser-induced plasma spectrometry: truly a surface analytical tool,” Spectrochim. Acta B 59, 147–161 (2004).
  14. D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
    [CrossRef]
  15. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
    [CrossRef]
  16. A. A. Bol’shakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289–302 (2006).
    [CrossRef]
  17. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
    [CrossRef]
  18. P. Fichet, M. Tabarant, B. Salle, and C. Gautier, “Comparisons between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338–344 (2006).
    [CrossRef]
  19. V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 63, 1047–1053 (2008).
  20. Y. Dikmelik, C. McEnnis, and J. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16, 5332–5337 (2008).
    [CrossRef]
  21. A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials,” Talanta 78, 800–804 (2009).
    [CrossRef]
  22. C. M. Dunsky and F. Colville, “Scribing thin-film solar panels,” http://www.industrial-lasers.com/articles/2008/02/scribing-thin-film-solar-panels.html .
  23. A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, “Laser-induced breakdown spectroscopy in industrial and security applications,” Appl. Opt. 49, C132–C142 (2010).
    [CrossRef]
  24. L. St-Onge and M. Sabsabi, “Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta B 55, 299–308 (2000).
  25. J. M. Vadillo, C. C. Garcia, S. Palanco, and J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam,” J. Anal. At. Spectrom. 13, 793–797 (1998).
    [CrossRef]
  26. M. Hidalgo, F. Martin, and J. J. Laserna, “Laser-induced breakdown spectrometry of titanium dioxide antireflection coatings in photovoltaic cells,” Anal. Chem. 68, 1095–1100 (1996).
    [CrossRef]
  27. W. N. Shafarman and L. Stolt, “Cu(InGa)Se2 solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley, 2003), pp. 574–575.
  28. Applied Spectra instruments, http://www.appliedspectra.com/products/rt100-hp.html .
  29. M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
    [CrossRef]
  30. N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
    [CrossRef]
  31. Y. Yoon, T. Kim, M. Yang, K. Lee, and G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchemical J. 68, 251–256 (2001).
    [CrossRef]

2010

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
[CrossRef]

A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, “Laser-induced breakdown spectroscopy in industrial and security applications,” Appl. Opt. 49, C132–C142 (2010).
[CrossRef]

N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
[CrossRef]

2009

A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials,” Talanta 78, 800–804 (2009).
[CrossRef]

2008

V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 63, 1047–1053 (2008).

Y. Dikmelik, C. McEnnis, and J. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16, 5332–5337 (2008).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

2007

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

2006

A. A. Bol’shakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289–302 (2006).
[CrossRef]

P. Fichet, M. Tabarant, B. Salle, and C. Gautier, “Comparisons between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338–344 (2006).
[CrossRef]

2004

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

J. M. Vadillo and J. J. Laserna, “Laser-induced plasma spectrometry: truly a surface analytical tool,” Spectrochim. Acta B 59, 147–161 (2004).

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

2003

2002

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry—a review,” Talanta 57, 425–451 (2002).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

L. Radziemski, “From laser to LIBS, the path of technology development,” Spectrochim. Acta B 57, 1109–1113 (2002).

2001

D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

Y. Yoon, T. Kim, M. Yang, K. Lee, and G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchemical J. 68, 251–256 (2001).
[CrossRef]

2000

L. St-Onge and M. Sabsabi, “Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta B 55, 299–308 (2000).

1999

J. Sneddon and Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

1998

J. M. Vadillo, C. C. Garcia, S. Palanco, and J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam,” J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

1996

M. Hidalgo, F. Martin, and J. J. Laserna, “Laser-induced breakdown spectrometry of titanium dioxide antireflection coatings in photovoltaic cells,” Anal. Chem. 68, 1095–1100 (1996).
[CrossRef]

Abou-Ras, D.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

Aggarwal, S. K.

A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials,” Talanta 78, 800–804 (2009).
[CrossRef]

Alamelu, D.

A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials,” Talanta 78, 800–804 (2009).
[CrossRef]

Bätzner, D. L.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

Baudelet, M.

V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 63, 1047–1053 (2008).

Berry, J. J.

N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
[CrossRef]

Body, D.

D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

Bol’shakov, A. A.

A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, “Laser-induced breakdown spectroscopy in industrial and security applications,” Appl. Opt. 49, C132–C142 (2010).
[CrossRef]

A. A. Bol’shakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289–302 (2006).
[CrossRef]

Boueri, M.

V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 63, 1047–1053 (2008).

Brennetot, R.

Chadwick, B. L.

D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

Contreras, M.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
[CrossRef]

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Contreras, M. A.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Correll, T.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Corsi, M.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

Cortez, J.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Cremers, D. A.

D. A. Cremers and L. J. Radzienski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cristoforetti, G.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

Curtis, C. J.

N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
[CrossRef]

DeHart, C.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Dikmelik, Y.

Egaas, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Elhassan, A.

M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Fichet, P.

Ganeev, A. A.

A. A. Bol’shakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289–302 (2006).
[CrossRef]

Garcia, C. C.

J. M. Vadillo, C. C. Garcia, S. Palanco, and J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam,” J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

Gautier, C.

P. Fichet, M. Tabarant, B. Salle, and C. Gautier, “Comparisons between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338–344 (2006).
[CrossRef]

Gibb, E.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Ginley, D. S.

N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
[CrossRef]

Gonzaga, F. B.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Gonzalez, J.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry—a review,” Talanta 57, 425–451 (2002).
[CrossRef]

Gornushkin, I. B.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Harith, M. A.

M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Haug, F.-J.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

Hidalgo, M.

M. Hidalgo, F. Martin, and J. J. Laserna, “Laser-induced breakdown spectrometry of titanium dioxide antireflection coatings in photovoltaic cells,” Anal. Chem. 68, 1095–1100 (1996).
[CrossRef]

Imam, H.

M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Ishizuka, S.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
[CrossRef]

Ismail, M. A.

M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Johnston, S.

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Juvé, V.

V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 63, 1047–1053 (2008).

Kälin, M.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

Kim, T.

Y. Yoon, T. Kim, M. Yang, K. Lee, and G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchemical J. 68, 251–256 (2001).
[CrossRef]

Kushiya, K.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
[CrossRef]

Laserna, J. J.

J. M. Vadillo and J. J. Laserna, “Laser-induced plasma spectrometry: truly a surface analytical tool,” Spectrochim. Acta B 59, 147–161 (2004).

J. M. Vadillo, C. C. Garcia, S. Palanco, and J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam,” J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

M. Hidalgo, F. Martin, and J. J. Laserna, “Laser-induced breakdown spectrometry of titanium dioxide antireflection coatings in photovoltaic cells,” Anal. Chem. 68, 1095–1100 (1996).
[CrossRef]

Lee, G.

Y. Yoon, T. Kim, M. Yang, K. Lee, and G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchemical J. 68, 251–256 (2001).
[CrossRef]

Lee, K.

Y. Yoon, T. Kim, M. Yang, K. Lee, and G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchemical J. 68, 251–256 (2001).
[CrossRef]

Lee, Y.-I.

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

J. Sneddon and Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Leisch, J. E.

N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
[CrossRef]

Li, J.

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Liu, C.

Liu, H.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry—a review,” Talanta 57, 425–451 (2002).
[CrossRef]

Mao, S. S.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry—a review,” Talanta 57, 425–451 (2002).
[CrossRef]

Mao, X.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry—a review,” Talanta 57, 425–451 (2002).
[CrossRef]

Martin, F.

M. Hidalgo, F. Martin, and J. J. Laserna, “Laser-induced breakdown spectrometry of titanium dioxide antireflection coatings in photovoltaic cells,” Anal. Chem. 68, 1095–1100 (1996).
[CrossRef]

Matsubara, K.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
[CrossRef]

McCandless, B.

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

McEnnis, C.

Menut, D.

Metzger, W.

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Mizioley, A. W.

A. W. Mizioley, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University, 2006).

Nemets, V. M.

A. A. Bol’shakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289–302 (2006).
[CrossRef]

Niki, S.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
[CrossRef]

Noufi, R.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Omenetto, N.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Palanco, S.

J. M. Vadillo, C. C. Garcia, S. Palanco, and J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam,” J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

Palleschi, V.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

A. W. Mizioley, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University, 2006).

Parilla, P. A.

N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
[CrossRef]

Pasquini, C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Perkins, C. L.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Perkins, J. D.

N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
[CrossRef]

Plumer, J. R.

Portelli, R.

V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 63, 1047–1053 (2008).

Powalla, M.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
[CrossRef]

Radziemski, L.

L. Radziemski, “From laser to LIBS, the path of technology development,” Spectrochim. Acta B 57, 1109–1113 (2002).

Radzienski, L. J.

D. A. Cremers and L. J. Radzienski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Repins, I.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Rivoallan, A.

Romeo, A.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

Romero, M.

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Rudmann, D.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

Russo, R. E.

A. A. Bol’shakov, J. H. Yoo, C. Liu, J. R. Plumer, and R. E. Russo, “Laser-induced breakdown spectroscopy in industrial and security applications,” Appl. Opt. 49, C132–C142 (2010).
[CrossRef]

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry—a review,” Talanta 57, 425–451 (2002).
[CrossRef]

Sabsabi, M.

L. St-Onge and M. Sabsabi, “Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta B 55, 299–308 (2000).

Salle, B.

P. Fichet, M. Tabarant, B. Salle, and C. Gautier, “Comparisons between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338–344 (2006).
[CrossRef]

Sarkar, A.

A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials,” Talanta 78, 800–804 (2009).
[CrossRef]

Scharf, J.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Schechter, I.

A. W. Mizioley, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University, 2006).

Shafarman, W. N.

W. N. Shafarman and L. Stolt, “Cu(InGa)Se2 solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley, 2003), pp. 574–575.

Silva, L. M. C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Smith, B. W.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Sneddon, J.

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

J. Sneddon and Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Song, K.

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

Spicer, J.

Stolt, L.

W. N. Shafarman and L. Stolt, “Cu(InGa)Se2 solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley, 2003), pp. 574–575.

St-Onge, L.

L. St-Onge and M. Sabsabi, “Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta B 55, 299–308 (2000).

Tabarant, M.

P. Fichet, M. Tabarant, B. Salle, and C. Gautier, “Comparisons between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338–344 (2006).
[CrossRef]

Terheggen, M.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

Tiwari, A. N.

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

To, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

Tognoni, E.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

Vadillo, J. M.

J. M. Vadillo and J. J. Laserna, “Laser-induced plasma spectrometry: truly a surface analytical tool,” Spectrochim. Acta B 59, 147–161 (2004).

J. M. Vadillo, C. C. Garcia, S. Palanco, and J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam,” J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

Vors, E.

Widjonarko, N. E.

N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
[CrossRef]

Winefordner, J. D.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Yan, Y.

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

Yang, M.

Y. Yoon, T. Kim, M. Yang, K. Lee, and G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchemical J. 68, 251–256 (2001).
[CrossRef]

Yoo, J. H.

Yoon, Y.

Y. Yoon, T. Kim, M. Yang, K. Lee, and G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchemical J. 68, 251–256 (2001).
[CrossRef]

Youniss, W. T.

M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Yu, J.

V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 63, 1047–1053 (2008).

Anal. Bioanal. Chem.

P. Fichet, M. Tabarant, B. Salle, and C. Gautier, “Comparisons between LIBS and ICP/OES,” Anal. Bioanal. Chem. 385, 338–344 (2006).
[CrossRef]

Anal. Chem.

M. Hidalgo, F. Martin, and J. J. Laserna, “Laser-induced breakdown spectrometry of titanium dioxide antireflection coatings in photovoltaic cells,” Anal. Chem. 68, 1095–1100 (1996).
[CrossRef]

Anal. Lett.

J. Sneddon and Y.-I. Lee, “Novel and recent applications of elemental determination by laser-induced breakdown spectrometry,” Anal. Lett. 32, 2143–2162 (1999).
[CrossRef]

Appl. Opt.

Appl. Spectrosc. Rev.

K. Song, Y.-I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

J. Anal. At. Spectrom.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

J. M. Vadillo, C. C. Garcia, S. Palanco, and J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam,” J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

J. Braz. Chem. Soc.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Microchemical J.

Y. Yoon, T. Kim, M. Yang, K. Lee, and G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchemical J. 68, 251–256 (2001).
[CrossRef]

Opt. Express

Prog. Photovoltaics

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficiency ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics 16, 235–239 (2008).
[CrossRef]

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics 18, 453–466 (2010).
[CrossRef]

A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93–111 (2004).
[CrossRef]

Rev. Sci. Instrum.

D. Body and B. L. Chadwick, “Simultaneous elemental analysis system using laser induced breakdown spectroscopy,” Rev. Sci. Instrum. 72, 1625–1629 (2001).
[CrossRef]

N. E. Widjonarko, J. D. Perkins, J. E. Leisch, P. A. Parilla, C. J. Curtis, D. S. Ginley, and J. J. Berry, “Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy,” Rev. Sci. Instrum. 81, 073103 (2010).
[CrossRef]

Russ. Chem. Rev.

A. A. Bol’shakov, A. A. Ganeev, and V. M. Nemets, “Prospects in analytical atomic spectrometry,” Russ. Chem. Rev. 75, 289–302 (2006).
[CrossRef]

Spectrochim. Acta B

V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, “Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 63, 1047–1053 (2008).

L. St-Onge and M. Sabsabi, “Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta B 55, 299–308 (2000).

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

J. M. Vadillo and J. J. Laserna, “Laser-induced plasma spectrometry: truly a surface analytical tool,” Spectrochim. Acta B 59, 147–161 (2004).

L. Radziemski, “From laser to LIBS, the path of technology development,” Spectrochim. Acta B 57, 1109–1113 (2002).

Talanta

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry—a review,” Talanta 57, 425–451 (2002).
[CrossRef]

A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials,” Talanta 78, 800–804 (2009).
[CrossRef]

Other

C. M. Dunsky and F. Colville, “Scribing thin-film solar panels,” http://www.industrial-lasers.com/articles/2008/02/scribing-thin-film-solar-panels.html .

W. N. Shafarman and L. Stolt, “Cu(InGa)Se2 solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley, 2003), pp. 574–575.

Applied Spectra instruments, http://www.appliedspectra.com/products/rt100-hp.html .

I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. McCandless, and R. Noufi, “Characterization of 19.9%-efficiency CIGS absorbers,” in Proceedings of IEEE Conference on Photovoltaics Specialists (IEEE, 2008), pp. 1–6.

D. A. Cremers and L. J. Radzienski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

A. W. Mizioley, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Illustration of the configuration of a CIGS solar cell. (b) Cross-section SEM image of CIGS absorber layer.

Fig. 2.
Fig. 2.

Variation of the FWHM and SBR of the 417.204 nm Ga line as a function of delay time (laser pulse energy=0.9mJ).

Fig. 3.
Fig. 3.

(a) Emission spectra of In (410.176 nm) and Ga (417.204 nm). (b) Intensity variation for increasing shot numbers (Gate delay=0.7μs, laser pulse energy=0.9mJ).

Fig. 4.
Fig. 4.

3D surface profile images of the craters produced by: (a) Single laser shot of CIGS absorber layer. (b) Double laser shots of CIGS absorber layer.

Fig. 5.
Fig. 5.

Intensity ratios of: (a) Ga/Cu as a function of Ga concentration. (b) Ga/In as a function of Ga concentration.

Fig. 6.
Fig. 6.

Calibration lines of Ga/In intensity ratios with respect to XRF and ICP-OES data.

Tables (1)

Tables Icon

Table 1. Concentration Values of Ga and In Measured by the XRF and ICP-OES Methods

Metrics