Abstract

We present analysis of superposition spectra following laser-induced breakdown (LIB) of methane. Both hydrogen-beta and hydrogen-gamma lines contain discernible contributions from diatomic carbon emissions for time delays of 1 to 2 μs from pulsed, 8 ns, infrared Nd:YAG laser radiation LIB. Analysis of the atomic lines and molecular C2 spectra reveal electron and molecular excitation temperatures of typically 13,000 and 5000 K, respectively.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Parigger, M. Dackman, and J. O. Hornkohl, “Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions,” Appl. Opt. 47, G1–G6 (2008).
    [CrossRef]
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).
  3. D. E. Cremers and Leon J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  4. C. Parigger and J. O. Hornkohl, “Diatomic molecular spectroscopy with standard and anomalous commutators,” Int. Rev. Atom. Mol. Phys. 1, 13–23 (2010).
  5. J. O. Hornkohl, L. Nemes, and C. G. Parigger, “Spectroscopy of carbon containing diatomic molecules,” in Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapor, L. Nemes and S. Irle, eds. (World Scientific, 2011), pp. 113–165.
  6. C. G. Parigger, D. H. Plemmons, and E. Oks, “Balmer series Hβ measurements in a laser-induced hydrogen plasma,” Appl. Opt. 42, 5992–6000 (2003).
    [CrossRef]
  7. C. G. Parigger and E. Oks, “Hydrogen Balmer series spectroscopy in laser-induced breakdown plasmas,” Int. Rev. Atom. Mol. Phys. 1, 25–43 (2010).
  8. E. Oks, Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The Physical Insight (Alpha Science, 2006).
  9. C. G. Parigger, “Diagnostics of a laser-induced optical breakdown based on half-width at half area of H-α, H-β, and H-γ lines,” Int. Rev. Atom. Mol. Phys. 2, 129–136 (2010).
  10. R. Zikić, M. A. Gigosos, M. Ivković, M. Á. González, and N. Konjević, “A program for the evaluation of electron number density from experimental hydrogen Balmer beta line profiles,” Spectrochim. Acta B 57, 987–998 (2002).
    [CrossRef]
  11. J. Torres, J. M. Palomares, M. A. Gigosos, A. Gamero, A. Sola, and J. J. A. M. van der Mullen, “An experimental study on the asymmetry and the dip form of the H β line profiles in microwave produced plasmas at atmospheric pressure,” Spectrochim. Acta B 63, 939–947 (2008).
    [CrossRef]
  12. S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
    [CrossRef]
  13. E. Schrödinger, “Quantisierung als Eigenwertproblem,” Ann. Phys. 385, 437–490 (1926).
    [CrossRef]
  14. E. Schrödinger, “An undulatory theory of mechanics of atoms and molecules,” Phys. Rev. 28, 1049–1070 (1926).
    [CrossRef]
  15. P. A. Epstein, “The Stark effect from the point of view of Schrödingers quantum theory,” Phys. Rev. 28, 695–710(1926).
    [CrossRef]
  16. J. Stark, “Beobachtungen über den Effekt des electrischen Feldes auf Spectrallinien. V. Feinzerlegung der Wasserstoffserie,” Ann. Phys. 353, 193–209 (1915).
    [CrossRef]
  17. H. Jäger, “Experimental investigations of Stark effect at high field strengths,” Phys. Scr. T26, 74–83 (1989).
    [CrossRef]
  18. H. A. Bethe and E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer Verlag, 1957), p. 228–234.
  19. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1993).
  20. R. C. Hillborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that” (2002), http://arXiv.org/abs/physics/0202029 .
  21. J. O. Hornkohl, C. G. Parigger, and L. Nemes, “Diatomic Hönl–London factor computer program,” Appl. Opt. 44, 3686–3695 (2005).
    [CrossRef]
  22. I. G. Dors, C. Parigger, and J. W. L. Lewis, “Spectroscopic temperature determination of aluminum monoxide in laser ablation with 266-nm radiation,” Opt. Lett. 23, 1778–1780 (1998).
    [CrossRef]
  23. C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+→X2Σ+ emission spectra,” Spectrochim. Acta A 81, 404–411 (2011).
    [CrossRef]
  24. C. O. Laux, “Radiation and nonequilibrium collisional-radiative models,” in Physico-Chemical Modeling of High Enthalpy and Plasma Flows, D. Fletcher, J.-M. Charbonnier, G. S. R. Sarma, and T. Magin, eds., von Karman Institute Lecture Series 2002–07 (Rhode-Saint-Genése, 2002).
  25. C. Parigger, G. Guan, and J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced optical breakdown in air,” Appl. Opt. 42, 5986–5991 (2003).
    [CrossRef]
  26. R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry (LAMIS),” Spectrochim. Acta B 66, 99–104 (2011).
    [CrossRef]

2011 (2)

C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+→X2Σ+ emission spectra,” Spectrochim. Acta A 81, 404–411 (2011).
[CrossRef]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry (LAMIS),” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

2010 (3)

C. Parigger and J. O. Hornkohl, “Diatomic molecular spectroscopy with standard and anomalous commutators,” Int. Rev. Atom. Mol. Phys. 1, 13–23 (2010).

C. G. Parigger and E. Oks, “Hydrogen Balmer series spectroscopy in laser-induced breakdown plasmas,” Int. Rev. Atom. Mol. Phys. 1, 25–43 (2010).

C. G. Parigger, “Diagnostics of a laser-induced optical breakdown based on half-width at half area of H-α, H-β, and H-γ lines,” Int. Rev. Atom. Mol. Phys. 2, 129–136 (2010).

2009 (1)

S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
[CrossRef]

2008 (2)

C. G. Parigger, M. Dackman, and J. O. Hornkohl, “Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions,” Appl. Opt. 47, G1–G6 (2008).
[CrossRef]

J. Torres, J. M. Palomares, M. A. Gigosos, A. Gamero, A. Sola, and J. J. A. M. van der Mullen, “An experimental study on the asymmetry and the dip form of the H β line profiles in microwave produced plasmas at atmospheric pressure,” Spectrochim. Acta B 63, 939–947 (2008).
[CrossRef]

2005 (1)

2003 (2)

2002 (1)

R. Zikić, M. A. Gigosos, M. Ivković, M. Á. González, and N. Konjević, “A program for the evaluation of electron number density from experimental hydrogen Balmer beta line profiles,” Spectrochim. Acta B 57, 987–998 (2002).
[CrossRef]

1998 (1)

1989 (1)

H. Jäger, “Experimental investigations of Stark effect at high field strengths,” Phys. Scr. T26, 74–83 (1989).
[CrossRef]

1926 (3)

E. Schrödinger, “Quantisierung als Eigenwertproblem,” Ann. Phys. 385, 437–490 (1926).
[CrossRef]

E. Schrödinger, “An undulatory theory of mechanics of atoms and molecules,” Phys. Rev. 28, 1049–1070 (1926).
[CrossRef]

P. A. Epstein, “The Stark effect from the point of view of Schrödingers quantum theory,” Phys. Rev. 28, 695–710(1926).
[CrossRef]

1915 (1)

J. Stark, “Beobachtungen über den Effekt des electrischen Feldes auf Spectrallinien. V. Feinzerlegung der Wasserstoffserie,” Ann. Phys. 353, 193–209 (1915).
[CrossRef]

Bethe, H. A.

H. A. Bethe and E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer Verlag, 1957), p. 228–234.

Bol’shakov, A. A.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry (LAMIS),” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Cirisan, M.

S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
[CrossRef]

Cremers, D. E.

D. E. Cremers and Leon J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Dackman, M.

Demchenko, G. V.

S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
[CrossRef]

Demura, A. V.

S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
[CrossRef]

Djurovic, S.

S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
[CrossRef]

Dors, I. G.

Epstein, P. A.

P. A. Epstein, “The Stark effect from the point of view of Schrödingers quantum theory,” Phys. Rev. 28, 695–710(1926).
[CrossRef]

Gamero, A.

J. Torres, J. M. Palomares, M. A. Gigosos, A. Gamero, A. Sola, and J. J. A. M. van der Mullen, “An experimental study on the asymmetry and the dip form of the H β line profiles in microwave produced plasmas at atmospheric pressure,” Spectrochim. Acta B 63, 939–947 (2008).
[CrossRef]

Gigosos, M. A.

S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
[CrossRef]

J. Torres, J. M. Palomares, M. A. Gigosos, A. Gamero, A. Sola, and J. J. A. M. van der Mullen, “An experimental study on the asymmetry and the dip form of the H β line profiles in microwave produced plasmas at atmospheric pressure,” Spectrochim. Acta B 63, 939–947 (2008).
[CrossRef]

R. Zikić, M. A. Gigosos, M. Ivković, M. Á. González, and N. Konjević, “A program for the evaluation of electron number density from experimental hydrogen Balmer beta line profiles,” Spectrochim. Acta B 57, 987–998 (2002).
[CrossRef]

González, M. Á.

S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
[CrossRef]

R. Zikić, M. A. Gigosos, M. Ivković, M. Á. González, and N. Konjević, “A program for the evaluation of electron number density from experimental hydrogen Balmer beta line profiles,” Spectrochim. Acta B 57, 987–998 (2002).
[CrossRef]

Griem, H. R.

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1993).

Guan, G.

Hornkohl, J. O.

C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+→X2Σ+ emission spectra,” Spectrochim. Acta A 81, 404–411 (2011).
[CrossRef]

C. Parigger and J. O. Hornkohl, “Diatomic molecular spectroscopy with standard and anomalous commutators,” Int. Rev. Atom. Mol. Phys. 1, 13–23 (2010).

C. G. Parigger, M. Dackman, and J. O. Hornkohl, “Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions,” Appl. Opt. 47, G1–G6 (2008).
[CrossRef]

J. O. Hornkohl, C. G. Parigger, and L. Nemes, “Diatomic Hönl–London factor computer program,” Appl. Opt. 44, 3686–3695 (2005).
[CrossRef]

C. Parigger, G. Guan, and J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced optical breakdown in air,” Appl. Opt. 42, 5986–5991 (2003).
[CrossRef]

J. O. Hornkohl, L. Nemes, and C. G. Parigger, “Spectroscopy of carbon containing diatomic molecules,” in Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapor, L. Nemes and S. Irle, eds. (World Scientific, 2011), pp. 113–165.

Ivkovic, M.

R. Zikić, M. A. Gigosos, M. Ivković, M. Á. González, and N. Konjević, “A program for the evaluation of electron number density from experimental hydrogen Balmer beta line profiles,” Spectrochim. Acta B 57, 987–998 (2002).
[CrossRef]

Jäger, H.

H. Jäger, “Experimental investigations of Stark effect at high field strengths,” Phys. Scr. T26, 74–83 (1989).
[CrossRef]

Konjevic, N.

R. Zikić, M. A. Gigosos, M. Ivković, M. Á. González, and N. Konjević, “A program for the evaluation of electron number density from experimental hydrogen Balmer beta line profiles,” Spectrochim. Acta B 57, 987–998 (2002).
[CrossRef]

Laux, C. O.

C. O. Laux, “Radiation and nonequilibrium collisional-radiative models,” in Physico-Chemical Modeling of High Enthalpy and Plasma Flows, D. Fletcher, J.-M. Charbonnier, G. S. R. Sarma, and T. Magin, eds., von Karman Institute Lecture Series 2002–07 (Rhode-Saint-Genése, 2002).

Lewis, J. W. L.

Mao, X.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry (LAMIS),” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

McKay, C. P.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry (LAMIS),” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Nemes, L.

J. O. Hornkohl, C. G. Parigger, and L. Nemes, “Diatomic Hönl–London factor computer program,” Appl. Opt. 44, 3686–3695 (2005).
[CrossRef]

J. O. Hornkohl, L. Nemes, and C. G. Parigger, “Spectroscopy of carbon containing diatomic molecules,” in Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapor, L. Nemes and S. Irle, eds. (World Scientific, 2011), pp. 113–165.

Nikolic, D.

S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
[CrossRef]

Oks, E.

C. G. Parigger and E. Oks, “Hydrogen Balmer series spectroscopy in laser-induced breakdown plasmas,” Int. Rev. Atom. Mol. Phys. 1, 25–43 (2010).

C. G. Parigger, D. H. Plemmons, and E. Oks, “Balmer series Hβ measurements in a laser-induced hydrogen plasma,” Appl. Opt. 42, 5992–6000 (2003).
[CrossRef]

E. Oks, Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The Physical Insight (Alpha Science, 2006).

Palomares, J. M.

J. Torres, J. M. Palomares, M. A. Gigosos, A. Gamero, A. Sola, and J. J. A. M. van der Mullen, “An experimental study on the asymmetry and the dip form of the H β line profiles in microwave produced plasmas at atmospheric pressure,” Spectrochim. Acta B 63, 939–947 (2008).
[CrossRef]

Parigger, C.

Parigger, C. G.

C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+→X2Σ+ emission spectra,” Spectrochim. Acta A 81, 404–411 (2011).
[CrossRef]

C. G. Parigger, “Diagnostics of a laser-induced optical breakdown based on half-width at half area of H-α, H-β, and H-γ lines,” Int. Rev. Atom. Mol. Phys. 2, 129–136 (2010).

C. G. Parigger and E. Oks, “Hydrogen Balmer series spectroscopy in laser-induced breakdown plasmas,” Int. Rev. Atom. Mol. Phys. 1, 25–43 (2010).

C. G. Parigger, M. Dackman, and J. O. Hornkohl, “Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions,” Appl. Opt. 47, G1–G6 (2008).
[CrossRef]

J. O. Hornkohl, C. G. Parigger, and L. Nemes, “Diatomic Hönl–London factor computer program,” Appl. Opt. 44, 3686–3695 (2005).
[CrossRef]

C. G. Parigger, D. H. Plemmons, and E. Oks, “Balmer series Hβ measurements in a laser-induced hydrogen plasma,” Appl. Opt. 42, 5992–6000 (2003).
[CrossRef]

J. O. Hornkohl, L. Nemes, and C. G. Parigger, “Spectroscopy of carbon containing diatomic molecules,” in Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapor, L. Nemes and S. Irle, eds. (World Scientific, 2011), pp. 113–165.

Perry, D. L.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry (LAMIS),” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Plemmons, D. H.

Radziemski, Leon J.

D. E. Cremers and Leon J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Russo, R. E.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry (LAMIS),” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Salpeter, E.

H. A. Bethe and E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer Verlag, 1957), p. 228–234.

Schrödinger, E.

E. Schrödinger, “Quantisierung als Eigenwertproblem,” Ann. Phys. 385, 437–490 (1926).
[CrossRef]

E. Schrödinger, “An undulatory theory of mechanics of atoms and molecules,” Phys. Rev. 28, 1049–1070 (1926).
[CrossRef]

Sola, A.

J. Torres, J. M. Palomares, M. A. Gigosos, A. Gamero, A. Sola, and J. J. A. M. van der Mullen, “An experimental study on the asymmetry and the dip form of the H β line profiles in microwave produced plasmas at atmospheric pressure,” Spectrochim. Acta B 63, 939–947 (2008).
[CrossRef]

Sorkhabi, O.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry (LAMIS),” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Stark, J.

J. Stark, “Beobachtungen über den Effekt des electrischen Feldes auf Spectrallinien. V. Feinzerlegung der Wasserstoffserie,” Ann. Phys. 353, 193–209 (1915).
[CrossRef]

Torres, J.

J. Torres, J. M. Palomares, M. A. Gigosos, A. Gamero, A. Sola, and J. J. A. M. van der Mullen, “An experimental study on the asymmetry and the dip form of the H β line profiles in microwave produced plasmas at atmospheric pressure,” Spectrochim. Acta B 63, 939–947 (2008).
[CrossRef]

van der Mullen, J. J. A. M.

J. Torres, J. M. Palomares, M. A. Gigosos, A. Gamero, A. Sola, and J. J. A. M. van der Mullen, “An experimental study on the asymmetry and the dip form of the H β line profiles in microwave produced plasmas at atmospheric pressure,” Spectrochim. Acta B 63, 939–947 (2008).
[CrossRef]

Zikic, R.

R. Zikić, M. A. Gigosos, M. Ivković, M. Á. González, and N. Konjević, “A program for the evaluation of electron number density from experimental hydrogen Balmer beta line profiles,” Spectrochim. Acta B 57, 987–998 (2002).
[CrossRef]

Ann. Phys. (2)

J. Stark, “Beobachtungen über den Effekt des electrischen Feldes auf Spectrallinien. V. Feinzerlegung der Wasserstoffserie,” Ann. Phys. 353, 193–209 (1915).
[CrossRef]

E. Schrödinger, “Quantisierung als Eigenwertproblem,” Ann. Phys. 385, 437–490 (1926).
[CrossRef]

Appl. Opt. (4)

Int. Rev. Atom. Mol. Phys. (3)

C. G. Parigger and E. Oks, “Hydrogen Balmer series spectroscopy in laser-induced breakdown plasmas,” Int. Rev. Atom. Mol. Phys. 1, 25–43 (2010).

C. G. Parigger, “Diagnostics of a laser-induced optical breakdown based on half-width at half area of H-α, H-β, and H-γ lines,” Int. Rev. Atom. Mol. Phys. 2, 129–136 (2010).

C. Parigger and J. O. Hornkohl, “Diatomic molecular spectroscopy with standard and anomalous commutators,” Int. Rev. Atom. Mol. Phys. 1, 13–23 (2010).

Opt. Lett. (1)

Phys. Rev. (2)

E. Schrödinger, “An undulatory theory of mechanics of atoms and molecules,” Phys. Rev. 28, 1049–1070 (1926).
[CrossRef]

P. A. Epstein, “The Stark effect from the point of view of Schrödingers quantum theory,” Phys. Rev. 28, 695–710(1926).
[CrossRef]

Phys. Rev. E (1)

S. Djurović, M. Ćirisan, A. V. Demura, G. V. Demchenko, D. Nikolić, M. A. Gigosos, and M. Á. González, “Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations,” Phys. Rev. E 79, 046402 (2009).
[CrossRef]

Phys. Scr. (1)

H. Jäger, “Experimental investigations of Stark effect at high field strengths,” Phys. Scr. T26, 74–83 (1989).
[CrossRef]

Spectrochim. Acta A (1)

C. G. Parigger and J. O. Hornkohl, “Computation of AlO B2Σ+→X2Σ+ emission spectra,” Spectrochim. Acta A 81, 404–411 (2011).
[CrossRef]

Spectrochim. Acta B (3)

R. Zikić, M. A. Gigosos, M. Ivković, M. Á. González, and N. Konjević, “A program for the evaluation of electron number density from experimental hydrogen Balmer beta line profiles,” Spectrochim. Acta B 57, 987–998 (2002).
[CrossRef]

J. Torres, J. M. Palomares, M. A. Gigosos, A. Gamero, A. Sola, and J. J. A. M. van der Mullen, “An experimental study on the asymmetry and the dip form of the H β line profiles in microwave produced plasmas at atmospheric pressure,” Spectrochim. Acta B 63, 939–947 (2008).
[CrossRef]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry (LAMIS),” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Other (8)

E. Oks, Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The Physical Insight (Alpha Science, 2006).

J. O. Hornkohl, L. Nemes, and C. G. Parigger, “Spectroscopy of carbon containing diatomic molecules,” in Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapor, L. Nemes and S. Irle, eds. (World Scientific, 2011), pp. 113–165.

A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).

D. E. Cremers and Leon J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

C. O. Laux, “Radiation and nonequilibrium collisional-radiative models,” in Physico-Chemical Modeling of High Enthalpy and Plasma Flows, D. Fletcher, J.-M. Charbonnier, G. S. R. Sarma, and T. Magin, eds., von Karman Institute Lecture Series 2002–07 (Rhode-Saint-Genése, 2002).

H. A. Bethe and E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer Verlag, 1957), p. 228–234.

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1993).

R. C. Hillborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that” (2002), http://arXiv.org/abs/physics/0202029 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Measured and fitted hydrogen-beta emissions using asymmetric line shapes, Δτ=1.3μs, p=2.7×105Pa. Inferred Ne=1.0×1023m3.

Fig. 2.
Fig. 2.

Measured and fitted hydrogen-beta emissions using asymmetric line shapes, Δτ=1.3μs, p=6.5×105Pa. Inferred Ne=1.0×1023m3.

Fig. 3.
Fig. 3.

Measured and fitted hydrogen-beta emissions, Δτ=2.0μs, p=6.5×105Pa. Inferred Ne=0.5×1023m3 (compare Fig. 5).

Fig. 4.
Fig. 4.

Line positions computed using SPECAIR (top) and line-strength files (LSFs) for C2 (bottom) for an equilibrium temperature of T=5000K. The broadened profile (bottom) is computed for FWHM=0.1nm.

Fig. 5.
Fig. 5.

Measured Hβ and fitted C2 Swan band emissions. Δτ=2.0μs, p=2.7×105Pa. Fitted molecular emission temperature, 0.56×104K; electron excitation temperature, 1.3×104K.

Fig. 6.
Fig. 6.

Measured Hβ and fitted C2 Swan band emissions. Δτ=2.0μs, p=6.5×105Pa. Fitted molecular emission temperature, 0.54×104K; electron excitation temperature, 1.3×104K (compare Fig. 3).

Fig. 7.
Fig. 7.

Measured Hγ and C2 Swan band emissions, Δτ=2.0μs, p=2.7×105Pa. Fitted molecular emission temperature, 0.49×104K; electron excitation temperature, 1.3×104K.

Fig. 8.
Fig. 8.

Measured Hγ and C2 Swan band emissions, Δτ=2.0μs, p=6.5×105Pa. Fitted molecular emission temperature, 0.48×104K; electron excitation temperature, 1.3×104K.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sul=ul|u|Tk(q)|l|2,
S(nJ,nJ)=Sul,
Aul=2ωul33ε0hc3guSul.

Metrics