Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15, 040503 (2010).

[CrossRef]

D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, “Sparsity promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57, 2564–2567 (2010).

[CrossRef]

Y. Lv, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).

[CrossRef]

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express 17, 3025–3035 (2009).

[CrossRef]

C. Li, G. S. Mitchell, J. Dutta, S. Ahn, R. M. Leahy, and S. R. Cherry, “A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design,” Opt. Express 17, 7571–7585 (2009).

[CrossRef]

R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17, 14481–14494 (2009).

[CrossRef]

Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35, 5703–5707 (2008).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587(2007).

[CrossRef]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

A. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847–9857 (2005).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004).

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12, 5402–5417 (2004).

[CrossRef]

R. Ramlau, “A modified Landweber method for inverse problems,” Numer. Funct. Anal. Optim. 20, 79–98 (1999).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

M. Ainsworth and B. Senior, “Aspects of an adaptive hp-finite element method: Adaptive strategy conforming approximation and efficient solvers,” Comput. Methods Appl. M 150, 65–87 (1997).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624(1951).

[CrossRef]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).

[CrossRef]

M. Ainsworth and B. Senior, “Aspects of an adaptive hp-finite element method: Adaptive strategy conforming approximation and efficient solvers,” Comput. Methods Appl. M 150, 65–87 (1997).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express 17, 3025–3035 (2009).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15, 040503 (2010).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587(2007).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587(2007).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, “Sparsity promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57, 2564–2567 (2010).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).

[CrossRef]

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004).

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15, 040503 (2010).

[CrossRef]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).

[CrossRef]

D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, “Sparsity promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57, 2564–2567 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17, 14481–14494 (2009).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15, 040503 (2010).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).

[CrossRef]

Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35, 5703–5707 (2008).

[CrossRef]

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[CrossRef]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (Springer-Verlag, 1996).

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).

[CrossRef]

L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624(1951).

[CrossRef]

C. Li, G. S. Mitchell, J. Dutta, S. Ahn, R. M. Leahy, and S. R. Cherry, “A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design,” Opt. Express 17, 7571–7585 (2009).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587(2007).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17, 14481–14494 (2009).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15, 040503 (2010).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).

[CrossRef]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

J. Liu, Regularization Methods to Ill-Posed Problem and Its Applications (Science Press, 2005).

D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, “Sparsity promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57, 2564–2567 (2010).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

Y. Lv, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).

[CrossRef]

D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, “Sparsity promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57, 2564–2567 (2010).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15, 040503 (2010).

[CrossRef]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).

[CrossRef]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).

[CrossRef]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004).

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, “Sparsity promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57, 2564–2567 (2010).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17, 14481–14494 (2009).

[CrossRef]

R. Ramlau, “A modified Landweber method for inverse problems,” Numer. Funct. Anal. Optim. 20, 79–98 (1999).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

Y. Lv, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15, 040503 (2010).

[CrossRef]

A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express 17, 3025–3035 (2009).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

M. Ainsworth and B. Senior, “Aspects of an adaptive hp-finite element method: Adaptive strategy conforming approximation and efficient solvers,” Comput. Methods Appl. M 150, 65–87 (1997).

[CrossRef]

Y. Lv, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).

[CrossRef]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12, 5402–5417 (2004).

[CrossRef]

Y. Lv, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587(2007).

[CrossRef]

Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35, 5703–5707 (2008).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, “Sparsity promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57, 2564–2567 (2010).

[CrossRef]

R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17, 14481–14494 (2009).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

Y. Lv, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).

[CrossRef]

A. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847–9857 (2005).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004).

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, “Sparsity promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57, 2564–2567 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[CrossRef]

Y. Lv, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).

[CrossRef]

L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624(1951).

[CrossRef]

M. Ainsworth and B. Senior, “Aspects of an adaptive hp-finite element method: Adaptive strategy conforming approximation and efficient solvers,” Comput. Methods Appl. M 150, 65–87 (1997).

[CrossRef]

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004).

J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27, 48–57 (2008).

[CrossRef]

D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, “Sparsity promoting tomographic fluorescence imaging with simplified spherical harmonics approximation,” IEEE Trans. Biomed. Eng. 57, 2564–2567 (2010).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14, 064010 (2009).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15, 040503 (2010).

[CrossRef]

Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35, 5703–5707 (2008).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

R. Ramlau, “A modified Landweber method for inverse problems,” Numer. Funct. Anal. Optim. 20, 79–98 (1999).

[CrossRef]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12, 5402–5417 (2004).

[CrossRef]

A. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847–9857 (2005).

[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express 17, 3025–3035 (2009).

[CrossRef]

C. Li, G. S. Mitchell, J. Dutta, S. Ahn, R. M. Leahy, and S. R. Cherry, “A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design,” Opt. Express 17, 7571–7585 (2009).

[CrossRef]

R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17, 14481–14494 (2009).

[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010).

[CrossRef]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587(2007).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).

[CrossRef]

Y. Lv, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).

[CrossRef]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).

[CrossRef]

J. Liu, Regularization Methods to Ill-Posed Problem and Its Applications (Science Press, 2005).

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (Springer-Verlag, 1996).