Abstract

The developed iteration algorithm for simulation of lasers with an open resonator was employed in the study of transverse mode formation. The simulations of an axially symmetrical resonator rely on an analytical description of radiation diffraction from a narrow ring. Reflection of an incident wave with a specified amplitude-phase distribution from the mirror is calculated by the Green-function method. The model also includes an active medium homogeneous along the resonator axis that is represented by the formula for saturating gain. The calculations were performed for two types of lasers: with on-axis and off-axis gain maximum. In the first type of laser one can obtain either a principal mode or “multimode” generation. The latter means quasi-stationary generation with regular or chaotic oscillations. In the second type of laser high order single-mode generation is possible. Experimental results obtained on a fast axial flow 4 kW CO2 laser are also presented. They are in good agreement with the calculations.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer Verlag, 1997).
  3. Y. A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Institute of Physics, 1992).
  4. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  5. V. G. Niziev and R. V. Grishaev, “Dynamics of mode formation in an open resonator,” Appl. Opt. 49, 6582–6590 (2010).
    [CrossRef]
  6. I. A. Ramsay and J. J. Degnan, “A ray analysis of optical resonators formed by two spherical mirrors,” Appl. Opt. 9, 385–398 (1970).
    [CrossRef]
  7. Anatol N. Khilo, Eugeny G. Katranji, and Anatol A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001).
    [CrossRef]
  8. E. F. Yelden, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, and H. Reshef, “Toric unstable CO2 laser resonator: an experimental study,” Appl. Opt. 31, 1965–1974 (1992).
    [CrossRef]
  9. Masamori Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33, 1771–1773 (2008).
    [CrossRef]
  10. Y. P. Raizer, Gas Discharge Physics (Springer Verlag, 1997).
  11. W. Schottky and J. Issendoff, “Über die Whärmewirkung kathodischer Gehäuseströme in Quecksilberentladungen,” Z. Phys. A Hadrons Nuclei 26, 85–94 (1924).
  12. N. Takahashi, E. Tsuchida, and H. Sato, “Spatial variation of gain and saturation in a fast axial flow CO2 laser amplifier,” Appl. Opt. 28, 3725–3736 (1989).
    [CrossRef]
  13. E. Tsuchida and H. Sato, “Dependence of spatial gain distribution on gas-flow velocity and discharge current in a FAF CO2 laser amplifier,” Jpn. J. Appl. Phys. 28, 396–405(1989).
    [CrossRef]
  14. W. W. Rigrod, “Saturation effects in high-gain laser,” J. Appl. Phys. 36, 2487–2490 (1965).
    [CrossRef]
  15. D. Toebaert, “An integrated approach to laser machine tool fabrication,” Laser User 49, 30–31 (2007).

2010 (1)

2008 (1)

2007 (1)

D. Toebaert, “An integrated approach to laser machine tool fabrication,” Laser User 49, 30–31 (2007).

2001 (1)

1992 (1)

1989 (2)

N. Takahashi, E. Tsuchida, and H. Sato, “Spatial variation of gain and saturation in a fast axial flow CO2 laser amplifier,” Appl. Opt. 28, 3725–3736 (1989).
[CrossRef]

E. Tsuchida and H. Sato, “Dependence of spatial gain distribution on gas-flow velocity and discharge current in a FAF CO2 laser amplifier,” Jpn. J. Appl. Phys. 28, 396–405(1989).
[CrossRef]

1970 (1)

1965 (1)

W. W. Rigrod, “Saturation effects in high-gain laser,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

1924 (1)

W. Schottky and J. Issendoff, “Über die Whärmewirkung kathodischer Gehäuseströme in Quecksilberentladungen,” Z. Phys. A Hadrons Nuclei 26, 85–94 (1924).

Anan’ev, Y. A.

Y. A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Institute of Physics, 1992).

Capjack, C. E.

Degnan, J. J.

Endo, Masamori

Grishaev, R. V.

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Hodgson, N.

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer Verlag, 1997).

Issendoff, J.

W. Schottky and J. Issendoff, “Über die Whärmewirkung kathodischer Gehäuseströme in Quecksilberentladungen,” Z. Phys. A Hadrons Nuclei 26, 85–94 (1924).

Katranji, Eugeny G.

Khilo, Anatol N.

Nikumb, S. K.

Niziev, V. G.

Raizer, Y. P.

Y. P. Raizer, Gas Discharge Physics (Springer Verlag, 1997).

Ramsay, I. A.

Reshef, H.

Rigrod, W. W.

W. W. Rigrod, “Saturation effects in high-gain laser,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

Ryzhevich, Anatol A.

Sato, H.

E. Tsuchida and H. Sato, “Dependence of spatial gain distribution on gas-flow velocity and discharge current in a FAF CO2 laser amplifier,” Jpn. J. Appl. Phys. 28, 396–405(1989).
[CrossRef]

N. Takahashi, E. Tsuchida, and H. Sato, “Spatial variation of gain and saturation in a fast axial flow CO2 laser amplifier,” Appl. Opt. 28, 3725–3736 (1989).
[CrossRef]

Schottky, W.

W. Schottky and J. Issendoff, “Über die Whärmewirkung kathodischer Gehäuseströme in Quecksilberentladungen,” Z. Phys. A Hadrons Nuclei 26, 85–94 (1924).

Seguin, H. J. J.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Takahashi, N.

Toebaert, D.

D. Toebaert, “An integrated approach to laser machine tool fabrication,” Laser User 49, 30–31 (2007).

Tsuchida, E.

N. Takahashi, E. Tsuchida, and H. Sato, “Spatial variation of gain and saturation in a fast axial flow CO2 laser amplifier,” Appl. Opt. 28, 3725–3736 (1989).
[CrossRef]

E. Tsuchida and H. Sato, “Dependence of spatial gain distribution on gas-flow velocity and discharge current in a FAF CO2 laser amplifier,” Jpn. J. Appl. Phys. 28, 396–405(1989).
[CrossRef]

Weber, H.

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer Verlag, 1997).

Yelden, E. F.

Appl. Opt. (4)

J. Appl. Phys. (1)

W. W. Rigrod, “Saturation effects in high-gain laser,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

E. Tsuchida and H. Sato, “Dependence of spatial gain distribution on gas-flow velocity and discharge current in a FAF CO2 laser amplifier,” Jpn. J. Appl. Phys. 28, 396–405(1989).
[CrossRef]

Laser User (1)

D. Toebaert, “An integrated approach to laser machine tool fabrication,” Laser User 49, 30–31 (2007).

Opt. Lett. (1)

Z. Phys. A Hadrons Nuclei (1)

W. Schottky and J. Issendoff, “Über die Whärmewirkung kathodischer Gehäuseströme in Quecksilberentladungen,” Z. Phys. A Hadrons Nuclei 26, 85–94 (1924).

Other (5)

Y. P. Raizer, Gas Discharge Physics (Springer Verlag, 1997).

A. E. Siegman, Lasers (University Science Books, 1986).

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer Verlag, 1997).

Y. A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Institute of Physics, 1992).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics