Abstract

We describe a fiber-based device that can significantly enhance the low-intensity fluctuations of an ultrashort pulse train to detect them more easily than with usual direct detection systems. Taking advantage of the Raman intrapulse effect that progressively shifts the central frequency of a femtosecond pulse propagating in an anomalous dispersion fiber, a subsequent spectral filtering can efficiently increase the level of fluctuations by more than 1 order of magnitude. We show that attention has to be paid to maintain the shape of the statistical distribution unaffected by the nonlinear process.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Burdett, “Amplitude modulated signals—the lock-in amplifier,” in Handbook of Measuring System Design (Wiley, 2005), pp. 1197–1208.
  2. D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
    [CrossRef]
  3. J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
    [CrossRef]
  4. C. Finot and J. Fatome, “All-optical fiber-based ultrafast amplitude jitter magnifier,” Opt. Express 18, 18697–18702 (2010).
    [CrossRef]
  5. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef]
  6. M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
    [CrossRef]
  7. N. Yamada, S. Nogiwa, and H. Ohta, “640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photon. Technol. Lett. 16, 1125–1127 (2004).
    [CrossRef]
  8. E. R. Andresen, V. Birkedal, J. Thogersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006).
    [CrossRef]
  9. C. Xu and X. Liu, “Photonic analog-to-digital converter using self-frequency shift and interleaving spectral filters,” Opt. Lett. 28, 986–988 (2003).
    [CrossRef]
  10. J. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  11. R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010).
    [CrossRef]
  12. C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
    [CrossRef]
  13. C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
    [CrossRef]
  14. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49, 757–767 (2002).
    [CrossRef]
  15. F. Druon, N. Sanner, G. Lucas-Leclin, P. Georges, K. P. Hansen, and A. Petersson, “Self-compression and Raman soliton generation in a photonic crystal fiber of 100-fs pulses produced by a diode-pumped Yb-doped oscillator,” Appl. Opt. 42, 6768–6770 (2003).
    [CrossRef]
  16. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
    [CrossRef]
  17. M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185, 135–144 (2010).
    [CrossRef]
  18. D. R. Solli, C. Ropers, and B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96, 151108 (2010).
    [CrossRef]
  19. J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
    [CrossRef]
  20. A. C. Judge, S. A. Dekker, R. Pant, C. Martijn de Sterke, and B. J. Eggleton, “Soliton self-frequency shift performance in As2S3 waveguides,” Opt. Express 18, 14960–14968 (2010).
    [CrossRef]

2011 (2)

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
[CrossRef]

2010 (5)

2009 (1)

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[CrossRef]

2008 (2)

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[CrossRef]

2006 (2)

2004 (1)

N. Yamada, S. Nogiwa, and H. Ohta, “640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photon. Technol. Lett. 16, 1125–1127 (2004).
[CrossRef]

2003 (2)

2002 (1)

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

1986 (2)

D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[CrossRef]

Andresen, E. R.

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

E. R. Andresen, V. Birkedal, J. Thogersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006).
[CrossRef]

Birkedal, V.

Bolger, J.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[CrossRef]

Bramerie, L.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Burdett, R.

R. Burdett, “Amplitude modulated signals—the lock-in amplifier,” in Handbook of Measuring System Design (Wiley, 2005), pp. 1197–1208.

Chan, M. C.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Chia, S. H.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Clouet, B.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Cormack, I. G.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Courjaud, A.

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

de Sterke, M.

Dekker, S. A.

Desevedavy, F.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
[CrossRef]

Dias, F.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[CrossRef]

Druon, F.

Dudley, J. M.

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185, 135–144 (2010).
[CrossRef]

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[CrossRef]

Eggleton, B. J.

El-Amraoui, M.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
[CrossRef]

Erkintalo, M.

M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185, 135–144 (2010).
[CrossRef]

Fatome, J.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
[CrossRef]

C. Finot and J. Fatome, “All-optical fiber-based ultrafast amplitude jitter magnifier,” Opt. Express 18, 18697–18702 (2010).
[CrossRef]

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Finot, C.

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

C. Finot and J. Fatome, “All-optical fiber-based ultrafast amplitude jitter magnifier,” Opt. Express 18, 18697–18702 (2010).
[CrossRef]

Gadret, G.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
[CrossRef]

Garnier, J.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Gay, M.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Genty, G.

M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185, 135–144 (2010).
[CrossRef]

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[CrossRef]

Georges, P.

Hage, C. H.

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

Hansen, K. P.

Ho, M. C.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Ivanov, A. A.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Jalali, B.

D. R. Solli, C. Ropers, and B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96, 151108 (2010).
[CrossRef]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[CrossRef]

Judge, A. C.

Jules, J. C.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
[CrossRef]

Keiding, S. R.

Kibler, B.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
[CrossRef]

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

Knight, J. C.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[CrossRef]

Kuhlmey, B. T.

Lafargue, C.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[CrossRef]

Linde, D.

D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

Liu, H. L.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Liu, J. Y.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Liu, T. M.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Liu, X.

Lucas-Leclin, G.

Magi, E. C.

Martijn de Sterke, C.

Michel, S.

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

Millot, G.

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Mottay, E.

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

Nogiwa, S.

N. Yamada, S. Nogiwa, and H. Ohta, “640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photon. Technol. Lett. 16, 1125–1127 (2004).
[CrossRef]

Ohta, H.

N. Yamada, S. Nogiwa, and H. Ohta, “640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photon. Technol. Lett. 16, 1125–1127 (2004).
[CrossRef]

Pant, R.

Petersson, A.

Petit, M.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Pitois, S.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Reid, D. T.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Rigneault, H.

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

Ropers, C.

D. R. Solli, C. Ropers, and B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96, 151108 (2010).
[CrossRef]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[CrossRef]

Sanner, N.

Simon, J. C.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Smektala, F.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
[CrossRef]

Solli, D. R.

D. R. Solli, C. Ropers, and B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96, 151108 (2010).
[CrossRef]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[CrossRef]

St. J. Russell, J.

St. J. Russell, P.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Sun, C. K.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Thogersen, J.

Tsai, T. H.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Wadsworth, W. J.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Xu, C.

Yamada, N.

N. Yamada, S. Nogiwa, and H. Ohta, “640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photon. Technol. Lett. 16, 1125–1127 (2004).
[CrossRef]

Zheltikov, A. M.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

D. R. Solli, C. Ropers, and B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96, 151108 (2010).
[CrossRef]

Electron. Lett. (2)

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–400 (2011).
[CrossRef]

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45, 217–219 (2009).
[CrossRef]

Eur. Phys. J. Spec. Top. (1)

M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185, 135–144 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, “1.2- to 2.2-um tunable Raman soliton source based on a Cr-forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

N. Yamada, S. Nogiwa, and H. Ohta, “640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photon. Technol. Lett. 16, 1125–1127 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054 (2007).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14, 84–91 (2008).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

C. H. Hage, B. Kibler, E. R. Andresen, S. Michel, H. Rigneault, A. Courjaud, E. Mottay, J. M. Dudley, G. Millot, and C. Finot, “Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber,” Proc. SPIE 8071, 80710I (2011).
[CrossRef]

Other (1)

R. Burdett, “Amplitude modulated signals—the lock-in amplifier,” in Handbook of Measuring System Design (Wiley, 2005), pp. 1197–1208.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of the optical jitter magnifier.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Evolution of the output optical spectrum according to the input average power. White ticks on the x axis indicate the positions of the filters. The transmission function of the long-pass filter with a cutoff wavelength of 1200 nm is plotted in the top inset.

Fig. 4.
Fig. 4.

Experimental TFs: output average power according to the input average power. (a) TF recorded for PCF A and for various cut-off wavelengths of the output long-pass filter. (b) TF obtained for PCFs A and B, dashed and solid curves, respectively.

Fig. 5.
Fig. 5.

Statistical distribution of the fluctuations (probability and amplitude are normalized to 1 for the most likely event) and electrical eye diagram of the pulse train when working at power P0. (a) Results obtained for a Gaussian initial distribution of the fluctuations are compared with the (b) results based on a uniform distribution. The experimental statistical distributions are compared to Gaussian and rectangular fits, respectively (dashed curves). The negative oscillation on the right side of the eye diagrams is due to the electronics of the photodiode.

Fig. 6.
Fig. 6.

Statistical distribution of the fluctuations (probability and amplitude are normalized to 1 for the most likely event) and electrical eye diagram of the output pulse train. Results obtained for the (a) working power P1 are compared with the results obtained for the (b) working power P2. The experimental statistical distributions are compared to Gaussian fits (dashed curves), and the results are plotted with a logarithmic scale for the x axis. The rms amplitude jitter of the initial pulse train is 10.5% for subplots (a) and (b).

Fig. 7.
Fig. 7.

Statistical distribution of the fluctuations (left, plotted on a linear scale) recorded at the output of the magnifying device, as well as corresponding electrical eye diagrams (right). Probability and amplitude are normalized to 1 for the most likely event. The initial periodic sequence of amplitude modulation of the peak powers of the pulses is plotted in the inset.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔPoutPc=ΔPinP011Pc/P0,

Metrics