Abstract

Particles generated during reactive magnetron sputtering cause defects in optical thin films, which may lead to losses in optical performance, pinholes, loss of adhesion, decreased laser-induced damage thresholds and many more negative effects. Therefore, it is important to reduce the particle contamination during the manufacturing process. In the present paper, the origin of particles during the deposition of various oxide films by midfrequency pulsed reactive magnetron sputtering was investigated. Several steps have been undertaken to decrease the particle contamination during the complete substrate handling procedure. It was found that conditioning of the vacuum chamber can help to decrease the defect level significantly. This level remains low for several hours of sputtering and increases after 100 hours of process time. Particle densities of SiO2 films deposited with cylindrical and planar dual magnetrons at different process parameters as well as different positions underneath the target were compared. It was observed that the process power influences the particle density significantly in case of planar targets while cylindrical targets have no such strong dependence. In addition, the particle contamination caused by different cylindrical target materials was analyzed. No major differences in particle contamination of different cylindrical target types and materials were found.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Strobel and R. M. Hohl, “Cleaning of parts for precision-optic and glass substrates before coating,” in Proceedings of the 46th Annual Technical Conference (Society of Vacuum Coaters, 2003), pp. 359–364.
  2. F. Sequeda and G. S. Selwyn, “In situ analysis of particle contamination in magnetron sputtering process during magnetic media manufacturing,” in Proceedings of the 44th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 29–34.
  3. P. Borden and J. Mason, “Monitoring particles in sputter coaters,” Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 1991), pp. 365–371.
  4. M. Vergöhl, C. Rickers, U. Kricheldorf, K. Schiffmann, and P. Giesel, “Deposition of multilayer optical films and Rugate filters deposited by reactive magnetron sputtering,” in Proceedings of the 49th Annual Technical Conference (Society of Vacuum Coaters, 2006), Vol. 49, pp. 265–270.
  5. M. Vergöhl, O. Werner, and S. Bruns, “New developments in magnetron sputter processes for precision optics,” Proc. SPIE 7101, 71010B (2008).
    [CrossRef]
  6. B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.
  7. C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
    [CrossRef]
  8. R. J. Hill and F. Jansen, “The use of ac power on cylindrical magnetrons: coatings on glass,” J. Non-Cryst. Solids 218, 35–37 (1997).
    [CrossRef]
  9. R. J. Hill, S. Nadel, and P. Petrach, “Large area deposition by mid-frequency AC sputtering,” in Proceedings of the 41st Annual Technical Conference (Society of Vacuum Coaters, 1998), pp. 197–202.
  10. W. Bosscher, D. Cnockaert, and H. Lievens, “Advances in cylindrical magnetrons,” in Proceedings of the 42nd Annual Technical Conference (Society of Vacuum Coaters, 1999), pp. 156–162.
  11. K. Koski, J. Hölsä, and P. Juliet, “Surface defects and arc generation in reactive magnetron sputtering of aluminium oxide thin films,” Surf. Coat. Technol. 115, 163–171 (1999).
    [CrossRef]
  12. A. Anders, “Physics of arcing, and implications to sputter deposition,” in Selected Papers from the 5th International Conference on Coatings on Glass (ICCG5)—Advanced Coatings on Glass and Plastics for Large-Area or High-Volume Products, ICCG-5 (ICCG Association, 2006), pp. 22–28.
  13. S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, “Pulsed magnetron sputter technology,” Surf. Coat. Technol. 61, 331–337 (1993).
    [CrossRef]
  14. G. Bräuer, J. Szczyrbowski, and G. P. Teschner, “New approaches for reactive sputtering of dielectric materials on large scale substrates,” J. Non-Cryst. Solids 218, 19–24 (1997).
    [CrossRef]
  15. P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56(3), 159–172 (2000).
    [CrossRef]
  16. P. J. Kelly, T. Vom Braucke, Z. Liu, R. D. Arnell, and E. D. Doyle, “Pulsed magnetron sputtered titanium nitride coatings for improved tribological performance and tool life,” in Proceedings of the 50th Annual Technical Conference (Society of Vacuum Coaters, 2007), pp. 596–601.
  17. M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and C. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), MA3.
  18. G. S. Selwyn, C. A. Weiss, F. Sequeda, and C. Huang, “In-situ analysis of particle contamination in magnetron sputtering processes,” Thin Solid Films 317, 85–92 (1998).
    [CrossRef]
  19. H. Miyashita, T. Kikuchi, Y. Kawasaki, Y. Katakura, and N. Ohsako, “Particle measurements in vacuum tools by in situ particle monitor,” J. Vac. Sci. Technol. A 17, 1066–1070 (1999).
    [CrossRef]
  20. M. Abràmoff, P. Magalhães, and S. Ram, “Image processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).
    [CrossRef]
  21. W. S. Rasband, “ImageJ,” http://imagej.nih.gov/ij/ , 1997–2011.
  22. S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476, 215–230 (2005).
    [CrossRef]
  23. J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films 475, 208–218 (2005).
    [CrossRef]
  24. I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surf. Coat. Technol. 127, 203–218 (2000).
    [CrossRef]
  25. N. Malkomes and M. Vergöhl, “Dynamic simulation of process control of the reactive sputter process and experimental results,” J. Appl. Phys. 127, 1–8 (2001).
  26. C. E. J. Wickersham, J. E. Poole, and J. S. Fan, “Arc generation from sputtering plasma-dielectric inclusion interactions,” J. Vac. Sci. Technol. A 20, 833–838 (2002).
    [CrossRef]

2008

M. Vergöhl, O. Werner, and S. Bruns, “New developments in magnetron sputter processes for precision optics,” Proc. SPIE 7101, 71010B (2008).
[CrossRef]

2005

C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
[CrossRef]

S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476, 215–230 (2005).
[CrossRef]

J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films 475, 208–218 (2005).
[CrossRef]

2004

M. Abràmoff, P. Magalhães, and S. Ram, “Image processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).
[CrossRef]

2002

C. E. J. Wickersham, J. E. Poole, and J. S. Fan, “Arc generation from sputtering plasma-dielectric inclusion interactions,” J. Vac. Sci. Technol. A 20, 833–838 (2002).
[CrossRef]

2001

N. Malkomes and M. Vergöhl, “Dynamic simulation of process control of the reactive sputter process and experimental results,” J. Appl. Phys. 127, 1–8 (2001).

2000

I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surf. Coat. Technol. 127, 203–218 (2000).
[CrossRef]

P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56(3), 159–172 (2000).
[CrossRef]

1999

H. Miyashita, T. Kikuchi, Y. Kawasaki, Y. Katakura, and N. Ohsako, “Particle measurements in vacuum tools by in situ particle monitor,” J. Vac. Sci. Technol. A 17, 1066–1070 (1999).
[CrossRef]

K. Koski, J. Hölsä, and P. Juliet, “Surface defects and arc generation in reactive magnetron sputtering of aluminium oxide thin films,” Surf. Coat. Technol. 115, 163–171 (1999).
[CrossRef]

1998

G. S. Selwyn, C. A. Weiss, F. Sequeda, and C. Huang, “In-situ analysis of particle contamination in magnetron sputtering processes,” Thin Solid Films 317, 85–92 (1998).
[CrossRef]

1997

G. Bräuer, J. Szczyrbowski, and G. P. Teschner, “New approaches for reactive sputtering of dielectric materials on large scale substrates,” J. Non-Cryst. Solids 218, 19–24 (1997).
[CrossRef]

R. J. Hill and F. Jansen, “The use of ac power on cylindrical magnetrons: coatings on glass,” J. Non-Cryst. Solids 218, 35–37 (1997).
[CrossRef]

1993

S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, “Pulsed magnetron sputter technology,” Surf. Coat. Technol. 61, 331–337 (1993).
[CrossRef]

Abràmoff, M.

M. Abràmoff, P. Magalhães, and S. Ram, “Image processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).
[CrossRef]

Anders, A.

A. Anders, “Physics of arcing, and implications to sputter deposition,” in Selected Papers from the 5th International Conference on Coatings on Glass (ICCG5)—Advanced Coatings on Glass and Plastics for Large-Area or High-Volume Products, ICCG-5 (ICCG Association, 2006), pp. 22–28.

Arnell, R. D.

P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56(3), 159–172 (2000).
[CrossRef]

P. J. Kelly, T. Vom Braucke, Z. Liu, R. D. Arnell, and E. D. Doyle, “Pulsed magnetron sputtered titanium nitride coatings for improved tribological performance and tool life,” in Proceedings of the 50th Annual Technical Conference (Society of Vacuum Coaters, 2007), pp. 596–601.

Baroch, P.

J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films 475, 208–218 (2005).
[CrossRef]

Bartzsch, H.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and C. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), MA3.

Berg, S.

S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476, 215–230 (2005).
[CrossRef]

Bierhals, A.

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

Borden, P.

P. Borden and J. Mason, “Monitoring particles in sputter coaters,” Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 1991), pp. 365–371.

Bosscher, W.

W. Bosscher, D. Cnockaert, and H. Lievens, “Advances in cylindrical magnetrons,” in Proceedings of the 42nd Annual Technical Conference (Society of Vacuum Coaters, 1999), pp. 156–162.

Bräuer, G.

G. Bräuer, J. Szczyrbowski, and G. P. Teschner, “New approaches for reactive sputtering of dielectric materials on large scale substrates,” J. Non-Cryst. Solids 218, 19–24 (1997).
[CrossRef]

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

Bringmann, U.

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

Bruns, S.

M. Vergöhl, O. Werner, and S. Bruns, “New developments in magnetron sputter processes for precision optics,” Proc. SPIE 7101, 71010B (2008).
[CrossRef]

Buzea, C.

C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
[CrossRef]

Cnockaert, D.

W. Bosscher, D. Cnockaert, and H. Lievens, “Advances in cylindrical magnetrons,” in Proceedings of the 42nd Annual Technical Conference (Society of Vacuum Coaters, 1999), pp. 156–162.

Doyle, E. D.

P. J. Kelly, T. Vom Braucke, Z. Liu, R. D. Arnell, and E. D. Doyle, “Pulsed magnetron sputtered titanium nitride coatings for improved tribological performance and tool life,” in Proceedings of the 50th Annual Technical Conference (Society of Vacuum Coaters, 2007), pp. 596–601.

Fan, J. S.

C. E. J. Wickersham, J. E. Poole, and J. S. Fan, “Arc generation from sputtering plasma-dielectric inclusion interactions,” J. Vac. Sci. Technol. A 20, 833–838 (2002).
[CrossRef]

Frach, P.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and C. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), MA3.

Giesel, P.

M. Vergöhl, C. Rickers, U. Kricheldorf, K. Schiffmann, and P. Giesel, “Deposition of multilayer optical films and Rugate filters deposited by reactive magnetron sputtering,” in Proceedings of the 49th Annual Technical Conference (Society of Vacuum Coaters, 2006), Vol. 49, pp. 265–270.

Goedicke, K.

S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, “Pulsed magnetron sputter technology,” Surf. Coat. Technol. 61, 331–337 (1993).
[CrossRef]

Han, J. G.

J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films 475, 208–218 (2005).
[CrossRef]

Hill, R. J.

R. J. Hill and F. Jansen, “The use of ac power on cylindrical magnetrons: coatings on glass,” J. Non-Cryst. Solids 218, 35–37 (1997).
[CrossRef]

R. J. Hill, S. Nadel, and P. Petrach, “Large area deposition by mid-frequency AC sputtering,” in Proceedings of the 41st Annual Technical Conference (Society of Vacuum Coaters, 1998), pp. 197–202.

Hohl, R. M.

J. Strobel and R. M. Hohl, “Cleaning of parts for precision-optic and glass substrates before coating,” in Proceedings of the 46th Annual Technical Conference (Society of Vacuum Coaters, 2003), pp. 359–364.

Höing, T.

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

Hölsä, J.

K. Koski, J. Hölsä, and P. Juliet, “Surface defects and arc generation in reactive magnetron sputtering of aluminium oxide thin films,” Surf. Coat. Technol. 115, 163–171 (1999).
[CrossRef]

Huang, C.

G. S. Selwyn, C. A. Weiss, F. Sequeda, and C. Huang, “In-situ analysis of particle contamination in magnetron sputtering processes,” Thin Solid Films 317, 85–92 (1998).
[CrossRef]

Jansen, F.

R. J. Hill and F. Jansen, “The use of ac power on cylindrical magnetrons: coatings on glass,” J. Non-Cryst. Solids 218, 35–37 (1997).
[CrossRef]

Jiang, X.

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

Juliet, P.

K. Koski, J. Hölsä, and P. Juliet, “Surface defects and arc generation in reactive magnetron sputtering of aluminium oxide thin films,” Surf. Coat. Technol. 115, 163–171 (1999).
[CrossRef]

Katakura, Y.

H. Miyashita, T. Kikuchi, Y. Kawasaki, Y. Katakura, and N. Ohsako, “Particle measurements in vacuum tools by in situ particle monitor,” J. Vac. Sci. Technol. A 17, 1066–1070 (1999).
[CrossRef]

Kawasaki, Y.

H. Miyashita, T. Kikuchi, Y. Kawasaki, Y. Katakura, and N. Ohsako, “Particle measurements in vacuum tools by in situ particle monitor,” J. Vac. Sci. Technol. A 17, 1066–1070 (1999).
[CrossRef]

Kelly, P. J.

P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56(3), 159–172 (2000).
[CrossRef]

P. J. Kelly, T. Vom Braucke, Z. Liu, R. D. Arnell, and E. D. Doyle, “Pulsed magnetron sputtered titanium nitride coatings for improved tribological performance and tool life,” in Proceedings of the 50th Annual Technical Conference (Society of Vacuum Coaters, 2007), pp. 596–601.

Kikuchi, T.

H. Miyashita, T. Kikuchi, Y. Kawasaki, Y. Katakura, and N. Ohsako, “Particle measurements in vacuum tools by in situ particle monitor,” J. Vac. Sci. Technol. A 17, 1066–1070 (1999).
[CrossRef]

Kirchhoff, V.

S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, “Pulsed magnetron sputter technology,” Surf. Coat. Technol. 61, 331–337 (1993).
[CrossRef]

Koski, K.

K. Koski, J. Hölsä, and P. Juliet, “Surface defects and arc generation in reactive magnetron sputtering of aluminium oxide thin films,” Surf. Coat. Technol. 115, 163–171 (1999).
[CrossRef]

Kricheldorf, U.

M. Vergöhl, C. Rickers, U. Kricheldorf, K. Schiffmann, and P. Giesel, “Deposition of multilayer optical films and Rugate filters deposited by reactive magnetron sputtering,” in Proceedings of the 49th Annual Technical Conference (Society of Vacuum Coaters, 2006), Vol. 49, pp. 265–270.

Lievens, H.

W. Bosscher, D. Cnockaert, and H. Lievens, “Advances in cylindrical magnetrons,” in Proceedings of the 42nd Annual Technical Conference (Society of Vacuum Coaters, 1999), pp. 156–162.

Liu, Z.

P. J. Kelly, T. Vom Braucke, Z. Liu, R. D. Arnell, and E. D. Doyle, “Pulsed magnetron sputtered titanium nitride coatings for improved tribological performance and tool life,” in Proceedings of the 50th Annual Technical Conference (Society of Vacuum Coaters, 2007), pp. 596–601.

Magalhães, P.

M. Abràmoff, P. Magalhães, and S. Ram, “Image processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).
[CrossRef]

Malkomes, N.

N. Malkomes and M. Vergöhl, “Dynamic simulation of process control of the reactive sputter process and experimental results,” J. Appl. Phys. 127, 1–8 (2001).

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

Mason, J.

P. Borden and J. Mason, “Monitoring particles in sputter coaters,” Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 1991), pp. 365–371.

Milde, F.

S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, “Pulsed magnetron sputter technology,” Surf. Coat. Technol. 61, 331–337 (1993).
[CrossRef]

Miyashita, H.

H. Miyashita, T. Kikuchi, Y. Kawasaki, Y. Katakura, and N. Ohsako, “Particle measurements in vacuum tools by in situ particle monitor,” J. Vac. Sci. Technol. A 17, 1066–1070 (1999).
[CrossRef]

Musil, J.

J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films 475, 208–218 (2005).
[CrossRef]

Nadel, S.

R. J. Hill, S. Nadel, and P. Petrach, “Large area deposition by mid-frequency AC sputtering,” in Proceedings of the 41st Annual Technical Conference (Society of Vacuum Coaters, 1998), pp. 197–202.

Nam, K. H.

J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films 475, 208–218 (2005).
[CrossRef]

Nyberg, T.

S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476, 215–230 (2005).
[CrossRef]

Ohsako, N.

H. Miyashita, T. Kikuchi, Y. Kawasaki, Y. Katakura, and N. Ohsako, “Particle measurements in vacuum tools by in situ particle monitor,” J. Vac. Sci. Technol. A 17, 1066–1070 (1999).
[CrossRef]

Petrach, P.

R. J. Hill, S. Nadel, and P. Petrach, “Large area deposition by mid-frequency AC sputtering,” in Proceedings of the 41st Annual Technical Conference (Society of Vacuum Coaters, 1998), pp. 197–202.

Pflug, A.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and C. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), MA3.

Poole, J. E.

C. E. J. Wickersham, J. E. Poole, and J. S. Fan, “Arc generation from sputtering plasma-dielectric inclusion interactions,” J. Vac. Sci. Technol. A 20, 833–838 (2002).
[CrossRef]

Ram, S.

M. Abràmoff, P. Magalhães, and S. Ram, “Image processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).
[CrossRef]

Reschke, J.

S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, “Pulsed magnetron sputter technology,” Surf. Coat. Technol. 61, 331–337 (1993).
[CrossRef]

Rickers, C.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and C. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), MA3.

M. Vergöhl, C. Rickers, U. Kricheldorf, K. Schiffmann, and P. Giesel, “Deposition of multilayer optical films and Rugate filters deposited by reactive magnetron sputtering,” in Proceedings of the 49th Annual Technical Conference (Society of Vacuum Coaters, 2006), Vol. 49, pp. 265–270.

Robbie, K.

C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
[CrossRef]

Safi, I.

I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surf. Coat. Technol. 127, 203–218 (2000).
[CrossRef]

Schiffmann, K.

M. Vergöhl, C. Rickers, U. Kricheldorf, K. Schiffmann, and P. Giesel, “Deposition of multilayer optical films and Rugate filters deposited by reactive magnetron sputtering,” in Proceedings of the 49th Annual Technical Conference (Society of Vacuum Coaters, 2006), Vol. 49, pp. 265–270.

Schiller, S.

S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, “Pulsed magnetron sputter technology,” Surf. Coat. Technol. 61, 331–337 (1993).
[CrossRef]

Schneider, S.

S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, “Pulsed magnetron sputter technology,” Surf. Coat. Technol. 61, 331–337 (1993).
[CrossRef]

Selwyn, G. S.

G. S. Selwyn, C. A. Weiss, F. Sequeda, and C. Huang, “In-situ analysis of particle contamination in magnetron sputtering processes,” Thin Solid Films 317, 85–92 (1998).
[CrossRef]

F. Sequeda and G. S. Selwyn, “In situ analysis of particle contamination in magnetron sputtering process during magnetic media manufacturing,” in Proceedings of the 44th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 29–34.

Sequeda, F.

G. S. Selwyn, C. A. Weiss, F. Sequeda, and C. Huang, “In-situ analysis of particle contamination in magnetron sputtering processes,” Thin Solid Films 317, 85–92 (1998).
[CrossRef]

F. Sequeda and G. S. Selwyn, “In situ analysis of particle contamination in magnetron sputtering process during magnetic media manufacturing,” in Proceedings of the 44th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 29–34.

Sittinger, V.

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

Strobel, J.

J. Strobel and R. M. Hohl, “Cleaning of parts for precision-optic and glass substrates before coating,” in Proceedings of the 46th Annual Technical Conference (Society of Vacuum Coaters, 2003), pp. 359–364.

Szczyrbowski, J.

G. Bräuer, J. Szczyrbowski, and G. P. Teschner, “New approaches for reactive sputtering of dielectric materials on large scale substrates,” J. Non-Cryst. Solids 218, 19–24 (1997).
[CrossRef]

Szyszka, B.

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

Teschner, G. P.

G. Bräuer, J. Szczyrbowski, and G. P. Teschner, “New approaches for reactive sputtering of dielectric materials on large scale substrates,” J. Non-Cryst. Solids 218, 19–24 (1997).
[CrossRef]

Vergoehl, M.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and C. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), MA3.

Vergöhl, M.

M. Vergöhl, O. Werner, and S. Bruns, “New developments in magnetron sputter processes for precision optics,” Proc. SPIE 7101, 71010B (2008).
[CrossRef]

N. Malkomes and M. Vergöhl, “Dynamic simulation of process control of the reactive sputter process and experimental results,” J. Appl. Phys. 127, 1–8 (2001).

M. Vergöhl, C. Rickers, U. Kricheldorf, K. Schiffmann, and P. Giesel, “Deposition of multilayer optical films and Rugate filters deposited by reactive magnetron sputtering,” in Proceedings of the 49th Annual Technical Conference (Society of Vacuum Coaters, 2006), Vol. 49, pp. 265–270.

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

Vlcek, J.

J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films 475, 208–218 (2005).
[CrossRef]

Vom Braucke, T.

P. J. Kelly, T. Vom Braucke, Z. Liu, R. D. Arnell, and E. D. Doyle, “Pulsed magnetron sputtered titanium nitride coatings for improved tribological performance and tool life,” in Proceedings of the 50th Annual Technical Conference (Society of Vacuum Coaters, 2007), pp. 596–601.

Weiss, C. A.

G. S. Selwyn, C. A. Weiss, F. Sequeda, and C. Huang, “In-situ analysis of particle contamination in magnetron sputtering processes,” Thin Solid Films 317, 85–92 (1998).
[CrossRef]

Werner, O.

M. Vergöhl, O. Werner, and S. Bruns, “New developments in magnetron sputter processes for precision optics,” Proc. SPIE 7101, 71010B (2008).
[CrossRef]

Wickersham, C. E. J.

C. E. J. Wickersham, J. E. Poole, and J. S. Fan, “Arc generation from sputtering plasma-dielectric inclusion interactions,” J. Vac. Sci. Technol. A 20, 833–838 (2002).
[CrossRef]

Biophotonics Int.

M. Abràmoff, P. Magalhães, and S. Ram, “Image processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).
[CrossRef]

J. Appl. Phys.

N. Malkomes and M. Vergöhl, “Dynamic simulation of process control of the reactive sputter process and experimental results,” J. Appl. Phys. 127, 1–8 (2001).

J. Non-Cryst. Solids

R. J. Hill and F. Jansen, “The use of ac power on cylindrical magnetrons: coatings on glass,” J. Non-Cryst. Solids 218, 35–37 (1997).
[CrossRef]

G. Bräuer, J. Szczyrbowski, and G. P. Teschner, “New approaches for reactive sputtering of dielectric materials on large scale substrates,” J. Non-Cryst. Solids 218, 19–24 (1997).
[CrossRef]

J. Vac. Sci. Technol. A

C. E. J. Wickersham, J. E. Poole, and J. S. Fan, “Arc generation from sputtering plasma-dielectric inclusion interactions,” J. Vac. Sci. Technol. A 20, 833–838 (2002).
[CrossRef]

H. Miyashita, T. Kikuchi, Y. Kawasaki, Y. Katakura, and N. Ohsako, “Particle measurements in vacuum tools by in situ particle monitor,” J. Vac. Sci. Technol. A 17, 1066–1070 (1999).
[CrossRef]

Proc. SPIE

M. Vergöhl, O. Werner, and S. Bruns, “New developments in magnetron sputter processes for precision optics,” Proc. SPIE 7101, 71010B (2008).
[CrossRef]

Rep. Prog. Phys.

C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
[CrossRef]

Surf. Coat. Technol.

S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, “Pulsed magnetron sputter technology,” Surf. Coat. Technol. 61, 331–337 (1993).
[CrossRef]

K. Koski, J. Hölsä, and P. Juliet, “Surface defects and arc generation in reactive magnetron sputtering of aluminium oxide thin films,” Surf. Coat. Technol. 115, 163–171 (1999).
[CrossRef]

I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surf. Coat. Technol. 127, 203–218 (2000).
[CrossRef]

Thin Solid Films

G. S. Selwyn, C. A. Weiss, F. Sequeda, and C. Huang, “In-situ analysis of particle contamination in magnetron sputtering processes,” Thin Solid Films 317, 85–92 (1998).
[CrossRef]

S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films 476, 215–230 (2005).
[CrossRef]

J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films 475, 208–218 (2005).
[CrossRef]

Vacuum

P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56(3), 159–172 (2000).
[CrossRef]

Other

P. J. Kelly, T. Vom Braucke, Z. Liu, R. D. Arnell, and E. D. Doyle, “Pulsed magnetron sputtered titanium nitride coatings for improved tribological performance and tool life,” in Proceedings of the 50th Annual Technical Conference (Society of Vacuum Coaters, 2007), pp. 596–601.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and C. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), MA3.

A. Anders, “Physics of arcing, and implications to sputter deposition,” in Selected Papers from the 5th International Conference on Coatings on Glass (ICCG5)—Advanced Coatings on Glass and Plastics for Large-Area or High-Volume Products, ICCG-5 (ICCG Association, 2006), pp. 22–28.

B. Szyszka, T. Höing, X. Jiang, A. Bierhals, N. Malkomes, M. Vergöhl, V. Sittinger, U. Bringmann, and G. Bräuer, “Large area deposition of transparent and conductive ZnO:Al layers by reactive mid frequency magnetron sputtering,” in Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 272–276.

R. J. Hill, S. Nadel, and P. Petrach, “Large area deposition by mid-frequency AC sputtering,” in Proceedings of the 41st Annual Technical Conference (Society of Vacuum Coaters, 1998), pp. 197–202.

W. Bosscher, D. Cnockaert, and H. Lievens, “Advances in cylindrical magnetrons,” in Proceedings of the 42nd Annual Technical Conference (Society of Vacuum Coaters, 1999), pp. 156–162.

J. Strobel and R. M. Hohl, “Cleaning of parts for precision-optic and glass substrates before coating,” in Proceedings of the 46th Annual Technical Conference (Society of Vacuum Coaters, 2003), pp. 359–364.

F. Sequeda and G. S. Selwyn, “In situ analysis of particle contamination in magnetron sputtering process during magnetic media manufacturing,” in Proceedings of the 44th Annual Technical Conference (Society of Vacuum Coaters, 2001), pp. 29–34.

P. Borden and J. Mason, “Monitoring particles in sputter coaters,” Proceedings of the 34th Annual Technical Conference (Society of Vacuum Coaters, 1991), pp. 365–371.

M. Vergöhl, C. Rickers, U. Kricheldorf, K. Schiffmann, and P. Giesel, “Deposition of multilayer optical films and Rugate filters deposited by reactive magnetron sputtering,” in Proceedings of the 49th Annual Technical Conference (Society of Vacuum Coaters, 2006), Vol. 49, pp. 265–270.

W. S. Rasband, “ImageJ,” http://imagej.nih.gov/ij/ , 1997–2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Deposition coater DYSCUS used for the experiments.

Fig. 2.
Fig. 2.

Planar cathodes used for the experiments (2×125×650mm3).

Fig. 3.
Fig. 3.

Cylindrical cathodes used for the experiments (550 mm length).

Fig. 4.
Fig. 4.

Left: typical crop of an image taken by the Olympus LEXT OLS 3100. Right: image after processing it to a binary black and white.

Fig. 5.
Fig. 5.

Particles obtained after iterative handling of substrates. Deposition chamber was cleaned before the experiment.

Fig. 6.
Fig. 6.

Particles obtained after more than 100 h of coating time. Chamber as well as substrate plate have not been cleaned.

Fig. 7.
Fig. 7.

Particles obtained after conditioning of the coating machine.

Fig. 8.
Fig. 8.

Particle contamination of SiO2 samples sputtered at 2×4.5kW from planar targets.

Fig. 9.
Fig. 9.

Particle contamination of SiO2 samples sputtered at 2×3kW from planar targets.

Fig. 10.
Fig. 10.

Particle contamination of SiO2 samples sputtered at 2×4.5kW from cylindrical crystalline targets.

Fig. 11.
Fig. 11.

Particle contamination of SiO2 samples sputtered at 2×3kW from cylindrical crystalline targets.

Fig. 12.
Fig. 12.

Particle contamination of SiO2 samples sputtered at 2×3kW from cylindrical crystalline targets in the transition mode. Here, the thickness of the target material was reduced from 12 to 6 mm.

Fig. 13.
Fig. 13.

Particle contamination of different oxide layers prepared on silicon wafers, sputtered at 2×3kW from different cylindrical targets. The thickness of every target material used was 6 mm.

Fig. 14.
Fig. 14.

Refractive index dispersion of SiO2 layers deposited with different magnetrons.

Fig. 15.
Fig. 15.

Refractive index dispersion of Nb2O5 layers deposited with planar and cylindrical magnetrons.

Tables (2)

Tables Icon

Table 1. Typical Deposition Rates Obtained while Sputtering from Different Silicon Targets

Tables Icon

Table 2. Deviation in Particle Size Determined by ImageJ Caused by Subjective Choice of the Threshold

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d<3μm,
3μmd10μm,
d>10μm

Metrics