Abstract

A terahertz wideband filter based on double layer metal hole arrays is designed in this paper. A metal hole array is perforated on a metal layer with a square array of circular air holes. The transmission characteristics of the electromagnetic waves through the metal hole array can be determined by the accumulation of in-phase scattering, spoof surface plasmon polaritons, and waveguide modes. The transmission spectrum is tuned by adding another identical layer metal hole array, and a wideband filter can be formed accordingly. Samples containing double-layered metal hole arrays were fabricated by micromachining technology. A wideband filter with center frequency located at 0.8 THz and FWHM reaching 400 GHz was experimentally achieved.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
    [CrossRef]
  2. S. Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett. 34, 2921–2923 (2009).
    [CrossRef]
  3. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
    [CrossRef]
  4. M. A. Kaliteevski, S. Brand, J. G. Cook, R. A. Abram, and J. M. Chamberlain, “Terahertz filter based on refractive properties of metallic photonic crystal,” Opt. Express 16, 7330–7335 (2008).
    [CrossRef]
  5. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
  6. H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).
  7. J. G. Han, J. Q. Gu, X. C. Lu, M. X. He, Q. R. Xing, and W. L. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express 17, 16527–16534 (2009).
  8. E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78, 235426 (2008).
    [CrossRef]
  9. F. J. G. Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  10. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  11. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
    [CrossRef]
  12. F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys. 99, 016105 (2006).
    [CrossRef]
  13. M. Dragoman and D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
    [CrossRef]
  14. F. J. G. Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  15. J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986).
  16. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71, 165408 (2005).
    [CrossRef]
  17. R. Ortuno, C. G. Meca, F. J. R. Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
    [CrossRef]
  18. S. A. Maier, “Transmission of radiation through apertures and films,” in Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 141–145.
  19. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband enhanced transmission through the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19, 21425–21431 (2011).

2011

2010

F. J. G. Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

2009

2008

M. A. Kaliteevski, S. Brand, J. G. Cook, R. A. Abram, and J. M. Chamberlain, “Terahertz filter based on refractive properties of metallic photonic crystal,” Opt. Express 16, 7330–7335 (2008).
[CrossRef]

M. Dragoman and D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
[CrossRef]

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78, 235426 (2008).
[CrossRef]

2007

R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

F. J. G. Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

2006

F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys. 99, 016105 (2006).
[CrossRef]

2005

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71, 165408 (2005).
[CrossRef]

1985

Abajo, F. J. G.

F. J. G. Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Abram, R. A.

Ahn, K. J.

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Ahn, Y. H.

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Alexander, R. W.

Bell, R. J.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Brand, S.

Cao, Y.

Chamberlain, J. M.

Chen, F.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).

Cook, J. G.

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
[CrossRef]

Ebbesen, T. W.

F. J. G. Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Fan, Y. C.

Fortuno, F. J. R.

R. Ortuno, C. G. Meca, F. J. R. Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Gu, J. Q.

Han, J. G.

Hangyo, M.

F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys. 99, 016105 (2006).
[CrossRef]

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71, 165408 (2005).
[CrossRef]

He, M. X.

Hendry, E.

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78, 235426 (2008).
[CrossRef]

Hibbins, A. P.

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78, 235426 (2008).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kaliteevski, M. A.

Kim, D. S.

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Kim, H. S.

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Koch, M.

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
[CrossRef]

R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986).

Kopschinski, O.

Krumbholz, N.

R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Kuipers, L.

F. J. G. Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Kurner, T.

R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Kyoung, J. S.

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Li, H. Q.

Lo, S. Z. A.

Long, L. L.

Lu, X. C.

Maier, S. A.

S. A. Maier, “Transmission of radiation through apertures and films,” in Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 141–145.

Marti, J.

R. Ortuno, C. G. Meca, F. J. R. Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Martinez, A.

R. Ortuno, C. G. Meca, F. J. R. Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Meca, C. G.

R. Ortuno, C. G. Meca, F. J. R. Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Mendis, R.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).

Mittleman, D.

R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Mittleman, D. M.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys. 99, 016105 (2006).
[CrossRef]

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71, 165408 (2005).
[CrossRef]

Moreno, L. M.

F. J. G. Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Murphy, T. E.

Nag, A.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).

Ordal, M. A.

Ortuno, R.

R. Ortuno, C. G. Meca, F. J. R. Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ostmann, T. K.

R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Park, D. J.

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Park, H. R.

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Park, Y. M.

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Piesiewicz, R.

R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Querry, M. R.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Sambles, J. R.

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78, 235426 (2008).
[CrossRef]

Schoebel, J.

R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Seo, M. A.

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Vidal, F. J. G.

F. J. G. Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Vieweg, N.

Wei, Z. Y.

Wilk, R.

Xing, Q. R.

Yu, X.

Zhang, W. L.

Appl. Opt.

Appl. Phys. Lett.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).

H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, “Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance,” Appl. Phys. Lett. 96, 121106 (2010).

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE Antennas Propag. Mag.

R. Piesiewicz, T. K. Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

J. Appl. Phys.

F. Miyamaru and M. Hangyo, “Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays,” J. Appl. Phys. 99, 016105 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78, 235426 (2008).
[CrossRef]

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71, 165408 (2005).
[CrossRef]

R. Ortuno, C. G. Meca, F. J. R. Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Prog. Quantum Electron.

M. Dragoman and D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
[CrossRef]

Rev. Mod. Phys.

F. J. G. Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. G. Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Other

S. A. Maier, “Transmission of radiation through apertures and films,” in Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 141–145.

J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmittance spectra calculated for different T. The detailed parameters of the model are as follows: lattice period L=300μm, air hole radius R=100μm, metal thickness T varies from 20 μm to 625 μm. The inset shows the single metal layer in a unit cell.

Fig. 2.
Fig. 2.

Changes of F with different metal thickness T and air hole radius R. T varies from 6.25 μm to 400 μm, R varies from 100 μm to 137.5 μm, and L keeps constant as 300 μm.

Fig. 3.
Fig. 3.

Transmittances of double metal layers with different distance D varying from 75 μm to 150 μm. Other model parameters are: lattice period L=300μm, air hole radius R=100μm, metal thickness T=30μm. The inset shows the double metal layers in a unit cell.

Fig. 4.
Fig. 4.

(a) Frequency spectra of the reference and the samples derived by FFT of the waveforms measured in the experiments. The inset shows the schematic of Sample_A. (b) Transmittances of Sample_A and Sample_B.

Fig. 5.
Fig. 5.

Transmittances of both aligned and misaligned double metal layers with parameters as D=130μm, T=30μm, R=100μm, and L=300μm. The inset shows the double metal layers with a misalignment of half period along both X and Y directions in a unit cell.

Metrics