Abstract

A high precision, polarization-independent optical circulator was developed for high accuracy Faraday depolarization lidar. Glan laser prisms and other novel optics were utilized in the circulator optics, resulting in a high extinction ratio of polarization of >30dB. High accuracy is needed to detect a small rotation angle in the polarization plane of the propagating beam. It is generated by the Faraday effect due to the lightning discharge. The developed circulator delivered high performance of insertion loss and isolation as laser transmitter and echo receiver in the inline lidar optics.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945–954 (1999).
    [CrossRef]
  2. E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998).
    [CrossRef]
  3. T. Halldorsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
    [CrossRef]
  4. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
    [CrossRef]
  5. N. Sugimoto, I. Matsui, and Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).
  6. R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
    [CrossRef]
  7. T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with annular beam: Experiment,” Appl. Opt. 44, 7407–7413 (2005).
    [CrossRef]
  8. T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with annular beam: Theoretical approach,” Appl. Opt. 44, 7467–7473 (2005).
    [CrossRef]
  9. T. Shiina, E. Minami, M. Ito, and Y. Okamura, “Optical circulator for in-line type compact lidar,” Appl. Opt. 41, 3900–3905 (2002).
    [CrossRef]
  10. A. Nakago and T. Shiina, “Low-altitude cloud and atmosphere observations with an in-line typed micro pulse lidar for local weather change,” Appl. Opt. (submitted).
  11. K. Kawahata and S. Okajima, “Interferometry and polarimetry -principle of interferometry and polarimetry-,” Jpn. Soc. Plasma Sci. Nucl. Fusion Res. 76, 845–847 (2000) (in Japanese).
  12. D. E. Evans and J. Katzenstein, “Laser light scattering in laboratory plasma,” Rep. Prog. Phys. 32, 207–271(1969).
    [CrossRef]
  13. T. Shiina, T. Honda, and T. Fukuchi, “Evaluation of polarization angle rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 163, 1–7 (2008).
  14. T. Shiina, T. Honda, and T. Fukuchi, “Measurement of polarization plane rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 171, 1–6 (2010).
  15. Wing-huen Ip, ed. Advances in Geosciences (World Scientific, 2009), Vol. 10, Chap. 12.
  16. T. Shiina, T. Honda, and T. Fukuchi, “Optical measurement of high-voltage discharge in air for lidar lightning detection,” APLS Rev. Laser Eng. 36, Suppl. Vol. 2008, 1279–1282 (2008).
  17. T. Fukuchi and T. Shiina, “Measurement of rotation of polarization plane of laser radiation propagating through impulse discharge in air,” IEEE J. Trans. Electr. Electron. Eng. 5, 82–86 (2010).
  18. P. C. Fletcher and D. L. Weisman, “Circulators for optical radar systems,” Appl. Opt. 4, 867–873 (1965).
    [CrossRef]
  19. M. Shirasaki, H. Kuwahara, and T. Obokata, “Compact polarization-independent optical circulator,” Appl. Opt. 20, 2683–2687 (1981).
    [CrossRef]
  20. Y. Okamura, T. Negami, and S. Yamamoto, “Integrated optical isolator and circulator using nonreciprocal phase shifters: a proposal,” Appl. Opt. 23, 1886–1889 (1984).
    [CrossRef]
  21. Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
    [CrossRef]
  22. A. V. Tran, W. D. Zhong, R. C. Ticker, and R. Lauder, “Optical add-drop multiplexers with low crosstalk,” IEEE Photon. Technol. Lett. 13, 582–584 (2001).
    [CrossRef]
  23. T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
    [CrossRef]
  24. R. M. Measures, Laser Remote Sensing (Wiley, 1984).
  25. T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and Kenji Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

2010 (2)

T. Shiina, T. Honda, and T. Fukuchi, “Measurement of polarization plane rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 171, 1–6 (2010).

T. Fukuchi and T. Shiina, “Measurement of rotation of polarization plane of laser radiation propagating through impulse discharge in air,” IEEE J. Trans. Electr. Electron. Eng. 5, 82–86 (2010).

2008 (2)

T. Shiina, T. Honda, and T. Fukuchi, “Optical measurement of high-voltage discharge in air for lidar lightning detection,” APLS Rev. Laser Eng. 36, Suppl. Vol. 2008, 1279–1282 (2008).

T. Shiina, T. Honda, and T. Fukuchi, “Evaluation of polarization angle rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 163, 1–7 (2008).

2006 (1)

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

2005 (3)

2002 (1)

2001 (1)

A. V. Tran, W. D. Zhong, R. C. Ticker, and R. Lauder, “Optical add-drop multiplexers with low crosstalk,” IEEE Photon. Technol. Lett. 13, 582–584 (2001).
[CrossRef]

2000 (2)

K. Kawahata and S. Okajima, “Interferometry and polarimetry -principle of interferometry and polarimetry-,” Jpn. Soc. Plasma Sci. Nucl. Fusion Res. 76, 845–847 (2000) (in Japanese).

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

1999 (1)

1998 (1)

E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998).
[CrossRef]

1996 (1)

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and Kenji Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

1990 (1)

N. Sugimoto, I. Matsui, and Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

1984 (1)

1981 (1)

1979 (1)

1978 (1)

1969 (1)

D. E. Evans and J. Katzenstein, “Laser light scattering in laboratory plasma,” Rep. Prog. Phys. 32, 207–271(1969).
[CrossRef]

1965 (1)

Agishev, R.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

Ahmed, S.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

Chang, C. H.

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

Chen, Y. K.

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

Evans, D. E.

D. E. Evans and J. Katzenstein, “Laser light scattering in laboratory plasma,” Rep. Prog. Phys. 32, 207–271(1969).
[CrossRef]

Feng, K. M.

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

Flamant, C.

Flamant, P. H.

Fletcher, P. C.

Frejafon, E.

E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998).
[CrossRef]

Fukuchi, T.

T. Fukuchi and T. Shiina, “Measurement of rotation of polarization plane of laser radiation propagating through impulse discharge in air,” IEEE J. Trans. Electr. Electron. Eng. 5, 82–86 (2010).

T. Shiina, T. Honda, and T. Fukuchi, “Measurement of polarization plane rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 171, 1–6 (2010).

T. Shiina, T. Honda, and T. Fukuchi, “Optical measurement of high-voltage discharge in air for lidar lightning detection,” APLS Rev. Laser Eng. 36, Suppl. Vol. 2008, 1279–1282 (2008).

T. Shiina, T. Honda, and T. Fukuchi, “Evaluation of polarization angle rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 163, 1–7 (2008).

Furushima, M.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and Kenji Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Gilerson, A.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

Gross, B.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

Guo, X.

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

Halldorsson, T.

Harms, J.

Honda, T.

T. Shiina, T. Honda, and T. Fukuchi, “Measurement of polarization plane rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 171, 1–6 (2010).

T. Shiina, T. Honda, and T. Fukuchi, “Evaluation of polarization angle rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 163, 1–7 (2008).

T. Shiina, T. Honda, and T. Fukuchi, “Optical measurement of high-voltage discharge in air for lidar lightning detection,” APLS Rev. Laser Eng. 36, Suppl. Vol. 2008, 1279–1282 (2008).

Hu, C. J.

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

Ito, M.

Iwasaka, N.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and Kenji Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Kai, Kenji

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and Kenji Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Kasparian, J.

E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998).
[CrossRef]

Katzenstein, J.

D. E. Evans and J. Katzenstein, “Laser light scattering in laboratory plasma,” Rep. Prog. Phys. 32, 207–271(1969).
[CrossRef]

Kawahata, K.

K. Kawahata and S. Okajima, “Interferometry and polarimetry -principle of interferometry and polarimetry-,” Jpn. Soc. Plasma Sci. Nucl. Fusion Res. 76, 845–847 (2000) (in Japanese).

Kuwahara, H.

Langerholc, J.

Lauder, R.

A. V. Tran, W. D. Zhong, R. C. Ticker, and R. Lauder, “Optical add-drop multiplexers with low crosstalk,” IEEE Photon. Technol. Lett. 13, 582–584 (2001).
[CrossRef]

Lee, C. C.

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

Lu, M. K.

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

Matsui, I.

N. Sugimoto, I. Matsui, and Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley, 1984).

Menut, L.

Minami, E.

Moshary, F.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

Murayama, T.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and Kenji Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Nakago, A.

A. Nakago and T. Shiina, “Low-altitude cloud and atmosphere observations with an in-line typed micro pulse lidar for local weather change,” Appl. Opt. (submitted).

Negami, T.

Obokata, T.

Oda, A.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and Kenji Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Okajima, S.

K. Kawahata and S. Okajima, “Interferometry and polarimetry -principle of interferometry and polarimetry-,” Jpn. Soc. Plasma Sci. Nucl. Fusion Res. 76, 845–847 (2000) (in Japanese).

Okamura, Y.

Pelon, J.

Ram, R. J.

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

Rambaldi, P.

E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998).
[CrossRef]

Sasano, Y.

N. Sugimoto, I. Matsui, and Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Shiina, T.

T. Shiina, T. Honda, and T. Fukuchi, “Measurement of polarization plane rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 171, 1–6 (2010).

T. Fukuchi and T. Shiina, “Measurement of rotation of polarization plane of laser radiation propagating through impulse discharge in air,” IEEE J. Trans. Electr. Electron. Eng. 5, 82–86 (2010).

T. Shiina, T. Honda, and T. Fukuchi, “Optical measurement of high-voltage discharge in air for lidar lightning detection,” APLS Rev. Laser Eng. 36, Suppl. Vol. 2008, 1279–1282 (2008).

T. Shiina, T. Honda, and T. Fukuchi, “Evaluation of polarization angle rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 163, 1–7 (2008).

T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with annular beam: Theoretical approach,” Appl. Opt. 44, 7467–7473 (2005).
[CrossRef]

T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with annular beam: Experiment,” Appl. Opt. 44, 7407–7413 (2005).
[CrossRef]

T. Shiina, E. Minami, M. Ito, and Y. Okamura, “Optical circulator for in-line type compact lidar,” Appl. Opt. 41, 3900–3905 (2002).
[CrossRef]

A. Nakago and T. Shiina, “Low-altitude cloud and atmosphere observations with an in-line typed micro pulse lidar for local weather change,” Appl. Opt. (submitted).

Shirasaki, M.

Sugimoto, N.

N. Sugimoto, I. Matsui, and Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Ticker, R. C.

A. V. Tran, W. D. Zhong, R. C. Ticker, and R. Lauder, “Optical add-drop multiplexers with low crosstalk,” IEEE Photon. Technol. Lett. 13, 582–584 (2001).
[CrossRef]

Tran, A. V.

A. V. Tran, W. D. Zhong, R. C. Ticker, and R. Lauder, “Optical add-drop multiplexers with low crosstalk,” IEEE Photon. Technol. Lett. 13, 582–584 (2001).
[CrossRef]

Tu, Y. K.

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

Tzeng, S. L.

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

Vezin, B.

E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998).
[CrossRef]

Weisman, D. L.

Wolf, J. P.

E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998).
[CrossRef]

Yamamoto, S.

Yoshida, K.

Yu, J.

E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998).
[CrossRef]

Zaman, T. R.

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

Zhong, W. D.

A. V. Tran, W. D. Zhong, R. C. Ticker, and R. Lauder, “Optical add-drop multiplexers with low crosstalk,” IEEE Photon. Technol. Lett. 13, 582–584 (2001).
[CrossRef]

Rev. Laser Eng. (1)

T. Shiina, T. Honda, and T. Fukuchi, “Optical measurement of high-voltage discharge in air for lidar lightning detection,” APLS Rev. Laser Eng. 36, Suppl. Vol. 2008, 1279–1282 (2008).

Appl. Opt. (10)

L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945–954 (1999).
[CrossRef]

E. Frejafon, J. Kasparian, P. Rambaldi, J. Yu, B. Vezin, and J. P. Wolf, “Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis,” Appl. Opt.2231–2237 (1998).
[CrossRef]

T. Halldorsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
[CrossRef]

J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
[CrossRef]

T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with annular beam: Experiment,” Appl. Opt. 44, 7407–7413 (2005).
[CrossRef]

T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with annular beam: Theoretical approach,” Appl. Opt. 44, 7467–7473 (2005).
[CrossRef]

T. Shiina, E. Minami, M. Ito, and Y. Okamura, “Optical circulator for in-line type compact lidar,” Appl. Opt. 41, 3900–3905 (2002).
[CrossRef]

P. C. Fletcher and D. L. Weisman, “Circulators for optical radar systems,” Appl. Opt. 4, 867–873 (1965).
[CrossRef]

M. Shirasaki, H. Kuwahara, and T. Obokata, “Compact polarization-independent optical circulator,” Appl. Opt. 20, 2683–2687 (1981).
[CrossRef]

Y. Okamura, T. Negami, and S. Yamamoto, “Integrated optical isolator and circulator using nonreciprocal phase shifters: a proposal,” Appl. Opt. 23, 1886–1889 (1984).
[CrossRef]

Appl. Phys. B (1)

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

Electr. Eng. Jpn. (2)

T. Shiina, T. Honda, and T. Fukuchi, “Evaluation of polarization angle rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 163, 1–7 (2008).

T. Shiina, T. Honda, and T. Fukuchi, “Measurement of polarization plane rotation of propagating light in a partially ionized atmosphere under discharge conditions,” Electr. Eng. Jpn. 171, 1–6 (2010).

IEEE J. Trans. Electr. Electron. Eng. (1)

T. Fukuchi and T. Shiina, “Measurement of rotation of polarization plane of laser radiation propagating through impulse discharge in air,” IEEE J. Trans. Electr. Electron. Eng. 5, 82–86 (2010).

IEEE Photon. Technol. Lett. (3)

Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1394–1396 (2000).
[CrossRef]

A. V. Tran, W. D. Zhong, R. C. Ticker, and R. Lauder, “Optical add-drop multiplexers with low crosstalk,” IEEE Photon. Technol. Lett. 13, 582–584 (2001).
[CrossRef]

T. R. Zaman, X. Guo, and R. J. Ram, “Proposal for polarization-independent integrated optical circulator,” IEEE Photon. Technol. Lett. 18, 1359–1361 (2006).
[CrossRef]

J. Meteorol. Soc. Jpn. (1)

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and Kenji Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Jpn. J. Opt. (1)

N. Sugimoto, I. Matsui, and Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Jpn. Soc. Plasma Sci. Nucl. Fusion Res. (1)

K. Kawahata and S. Okajima, “Interferometry and polarimetry -principle of interferometry and polarimetry-,” Jpn. Soc. Plasma Sci. Nucl. Fusion Res. 76, 845–847 (2000) (in Japanese).

Rep. Prog. Phys. (1)

D. E. Evans and J. Katzenstein, “Laser light scattering in laboratory plasma,” Rep. Prog. Phys. 32, 207–271(1969).
[CrossRef]

Other (3)

Wing-huen Ip, ed. Advances in Geosciences (World Scientific, 2009), Vol. 10, Chap. 12.

R. M. Measures, Laser Remote Sensing (Wiley, 1984).

A. Nakago and T. Shiina, “Low-altitude cloud and atmosphere observations with an in-line typed micro pulse lidar for local weather change,” Appl. Opt. (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Optics of inline-type lidar.

Fig. 2.
Fig. 2.

Polarization-independent optical circulator. (a) Lidar use for high-powered visible light. (b) Fiber communication use.

Fig. 3.
Fig. 3.

Laser beam insertion to the Glan laser prism. (a) Typical use (beam transmitting). (b) Irregular use (echo receiving).

Fig. 4.
Fig. 4.

New design for high precision, polarization-independent optical circulator.

Fig. 5.
Fig. 5.

Layout of polarization-independent optical circulator.

Fig. 6.
Fig. 6.

High precision polarization lidar.

Fig. 7.
Fig. 7.

Long-range echo characteristics.

Fig. 8.
Fig. 8.

Evaluation of atmospheric echoes.

Tables (3)

Tables Icon

Table 1. Optical Components of New Optical Circulator

Tables Icon

Table 2. Insertion Loss and Isolation of New Optical Circulator

Tables Icon

Table 3. Optical Components of High Precision Polarization Lidar

Metrics