Abstract

In this article, the locking phenomenon of polarization flipping is reported. A model that integrates the model of the equivalent cavity of a Fabry–Perot interferometer and Lamb’s semiclassical theory is built to explain the locking phenomenon. On the basis of analysis of the model, a method is proposed to release the locking of polarization flipping. After solving the problem of lock-in, the system in this paper can be used to measure small stress of the optical component and phase retardation of the birefringence component.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Mukai and K. Otsuka, “New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity,” Phys. Rev. Lett. 55, 1711–1714 (1985).
    [CrossRef]
  2. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, and P. Megret, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
    [CrossRef]
  3. J. Brannon, “Laser feedback: its effect on laser frequency,” Appl. Opt. 15, 1119–1120 (1976).
    [CrossRef]
  4. E. T. Shimizu, “Directional discrimination in the self-mixing type laser Doppler velocimeter,” Appl. Opt. 26, 4541–4544 (1987).
    [CrossRef]
  5. S. Shinohara, “Compact and versatile self-mixing type semiconductor laser Doppler velocimeters with direction discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
    [CrossRef]
  6. S. Donati and G. Giuliani, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
    [CrossRef]
  7. S. Donati, L. Fazoni, and S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
    [CrossRef]
  8. S. Merlo and S. Donati, “Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
    [CrossRef]
  9. T. Suzuki, T. Muto, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked laser diode interferometer,” Opt. Eng. 38, 543–548 (1999).
    [CrossRef]
  10. S. Koboyashi, Y. Yamamoto, and M. Ito, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 18, 582–595 (1982).
    [CrossRef]
  11. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37, 6684–6689 (1998).
    [CrossRef]
  12. G. Beheim and K. Firtsch, “Ranging finding using frequency modulated laser diode,” Appl. Opt. 25, 1439–1442(1986).
    [CrossRef]
  13. P. A. Roos, M. Stephens, and C. Wiemen, “Laser vibrometer based on optical feedback induced frequency modulation of a single mode laser diode,” Appl. Opt. 35, 6754–6761 (1996).
    [CrossRef]
  14. J. Kannelaud and W. Culshaw, “Coherence effects in gaseous lasers with axial magnetic fields. II. Experimental,” Phys. Rep. 141, 237–245 (1966).
    [CrossRef]
  15. H. de Lang, “Polarization properties of optical resonators passive and active,” Philips Res. Rep. Suppl. 8, 1–7 (1967).
  16. A. L. Floch, G. Ropars, J. M. Lenormand, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
    [CrossRef]
  17. L. Fei, S. Zhang, Y. Li, and J. Zhu, “Polarization control in a He–Ne laser using birefringence feedback,” Opt. Express 13, 3117–3122 (2005).
    [CrossRef]
  18. G. Stephan, A. D. May, R. E. Mueller, and B. Aissaoui, “Competition effects in the polarization of light in a quasi-isotropic laser,” J. Opt. Soc. Am. B 4, 1276–1280 (1987).
    [CrossRef]
  19. M. Sciamanna, K. Panajotov, H. Thienpont, and I. Veretennicoff, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
    [CrossRef]
  20. H. Li, A. Hohl, G. Athanasios, H. Hong, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
    [CrossRef]
  21. W. Xiong, P. Glanznig, P. Paddon, and A. D. May, “Stability of polarized modes in a quasi-isotropic laser: experimental confirmation,” J. Opt. Soc. Am. B 4, 1276–1280 (1987).
    [CrossRef]
  22. G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
    [CrossRef]
  23. G. Roparsa, A. Le Floch, and R. Le Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
    [CrossRef]
  24. P. Besnard, X. Jia, R. Dalgliesh, and A. D. May, “Polarization switching in a microchip Nd:YAG laser using polarized feedback,” J. Opt. Soc. Am. B 10, 1605–1609 (1993).
    [CrossRef]
  25. L. Fei and S. Zhang, “Laser feedback technical for precise retardation measurement,” Chin. Phys. Lett. 23, 2974–2977 (2006).
    [CrossRef]
  26. L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246, 505–510 (2005).
    [CrossRef]
  27. P. King and G. Steward, “Metrology with an optical maser,” New Sci. 17, 180–182 (1963).
  28. P. J. Groot, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
    [CrossRef]
  29. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
    [CrossRef]
  30. W. M. Doyle and M. B. White, “Effects of atomic degeneracy and cavity anisotropy on the behavior of a gas laser,” Phys. Rev. 147, 359–367 (1966).
    [CrossRef]

2006

L. Fei and S. Zhang, “Laser feedback technical for precise retardation measurement,” Chin. Phys. Lett. 23, 2974–2977 (2006).
[CrossRef]

2005

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246, 505–510 (2005).
[CrossRef]

L. Fei, S. Zhang, Y. Li, and J. Zhu, “Polarization control in a He–Ne laser using birefringence feedback,” Opt. Express 13, 3117–3122 (2005).
[CrossRef]

2003

1999

T. Suzuki, T. Muto, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked laser diode interferometer,” Opt. Eng. 38, 543–548 (1999).
[CrossRef]

1998

H. Li, A. Hohl, G. Athanasios, H. Hong, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37, 6684–6689 (1998).
[CrossRef]

1997

S. Merlo and S. Donati, “Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
[CrossRef]

1996

S. Donati, L. Fazoni, and S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

P. A. Roos, M. Stephens, and C. Wiemen, “Laser vibrometer based on optical feedback induced frequency modulation of a single mode laser diode,” Appl. Opt. 35, 6754–6761 (1996).
[CrossRef]

1995

S. Donati and G. Giuliani, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
[CrossRef]

1993

1992

G. Roparsa, A. Le Floch, and R. Le Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

1989

S. Shinohara, “Compact and versatile self-mixing type semiconductor laser Doppler velocimeters with direction discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

1988

1987

1986

1985

T. Mukai and K. Otsuka, “New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity,” Phys. Rev. Lett. 55, 1711–1714 (1985).
[CrossRef]

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
[CrossRef]

1984

A. L. Floch, G. Ropars, J. M. Lenormand, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

1982

S. Koboyashi, Y. Yamamoto, and M. Ito, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

1976

1967

H. de Lang, “Polarization properties of optical resonators passive and active,” Philips Res. Rep. Suppl. 8, 1–7 (1967).

1966

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous lasers with axial magnetic fields. II. Experimental,” Phys. Rep. 141, 237–245 (1966).
[CrossRef]

W. M. Doyle and M. B. White, “Effects of atomic degeneracy and cavity anisotropy on the behavior of a gas laser,” Phys. Rev. 147, 359–367 (1966).
[CrossRef]

1964

E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
[CrossRef]

1963

P. King and G. Steward, “Metrology with an optical maser,” New Sci. 17, 180–182 (1963).

Aissaoui, B.

Athanasios, G.

H. Li, A. Hohl, G. Athanasios, H. Hong, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Beheim, G.

Besnard, P.

Bosch, T.

Brannon, J.

Choquette, K. D.

H. Li, A. Hohl, G. Athanasios, H. Hong, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Culshaw, W.

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous lasers with axial magnetic fields. II. Experimental,” Phys. Rep. 141, 237–245 (1966).
[CrossRef]

Dalgliesh, R.

de Lang, H.

H. de Lang, “Polarization properties of optical resonators passive and active,” Philips Res. Rep. Suppl. 8, 1–7 (1967).

Donati, S.

S. Merlo and S. Donati, “Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
[CrossRef]

S. Donati, L. Fazoni, and S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

S. Donati and G. Giuliani, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
[CrossRef]

Doyle, W. M.

W. M. Doyle and M. B. White, “Effects of atomic degeneracy and cavity anisotropy on the behavior of a gas laser,” Phys. Rev. 147, 359–367 (1966).
[CrossRef]

Fazoni, L.

S. Donati, L. Fazoni, and S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

Fei, L.

L. Fei and S. Zhang, “Laser feedback technical for precise retardation measurement,” Chin. Phys. Lett. 23, 2974–2977 (2006).
[CrossRef]

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246, 505–510 (2005).
[CrossRef]

L. Fei, S. Zhang, Y. Li, and J. Zhu, “Polarization control in a He–Ne laser using birefringence feedback,” Opt. Express 13, 3117–3122 (2005).
[CrossRef]

Firtsch, K.

Floch, A. L.

A. L. Floch, G. Ropars, J. M. Lenormand, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

Giuliani, G.

S. Donati and G. Giuliani, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
[CrossRef]

Glanznig, P.

Gouaux, F.

Groot, P. J.

Hohl, A.

H. Li, A. Hohl, G. Athanasios, H. Hong, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Hong, H.

H. Li, A. Hohl, G. Athanasios, H. Hong, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Hugon, D.

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
[CrossRef]

Ito, M.

S. Koboyashi, Y. Yamamoto, and M. Ito, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

Jia, X.

Kannelaud, J.

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous lasers with axial magnetic fields. II. Experimental,” Phys. Rep. 141, 237–245 (1966).
[CrossRef]

King, P.

P. King and G. Steward, “Metrology with an optical maser,” New Sci. 17, 180–182 (1963).

Koboyashi, S.

S. Koboyashi, Y. Yamamoto, and M. Ito, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

Lamb, E.

E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
[CrossRef]

Le Floch, A.

G. Roparsa, A. Le Floch, and R. Le Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

Le Naour, R.

G. Roparsa, A. Le Floch, and R. Le Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

Lenormand, J. M.

A. L. Floch, G. Ropars, J. M. Lenormand, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

Li, H.

H. Li, A. Hohl, G. Athanasios, H. Hong, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Li, Y.

Maruyama, T.

T. Suzuki, T. Muto, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked laser diode interferometer,” Opt. Eng. 38, 543–548 (1999).
[CrossRef]

May, A. D.

Megret, P.

Merlo, S.

S. Merlo and S. Donati, “Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
[CrossRef]

S. Donati, L. Fazoni, and S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

Mueller, R. E.

Mukai, T.

T. Mukai and K. Otsuka, “New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity,” Phys. Rev. Lett. 55, 1711–1714 (1985).
[CrossRef]

Muto, T.

T. Suzuki, T. Muto, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked laser diode interferometer,” Opt. Eng. 38, 543–548 (1999).
[CrossRef]

Naour, R. L.

A. L. Floch, G. Ropars, J. M. Lenormand, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

Otsuka, K.

T. Mukai and K. Otsuka, “New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity,” Phys. Rev. Lett. 55, 1711–1714 (1985).
[CrossRef]

Paddon, P.

Panajotov, K.

Roos, P. A.

Ropars, G.

A. L. Floch, G. Ropars, J. M. Lenormand, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

Roparsa, G.

G. Roparsa, A. Le Floch, and R. Le Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

Sasaki, O.

T. Suzuki, T. Muto, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked laser diode interferometer,” Opt. Eng. 38, 543–548 (1999).
[CrossRef]

Sciamanna, M.

Servagent, N.

Shimizu, E. T.

Shinohara, S.

S. Shinohara, “Compact and versatile self-mixing type semiconductor laser Doppler velocimeters with direction discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

Stephan, G.

G. Stephan, A. D. May, R. E. Mueller, and B. Aissaoui, “Competition effects in the polarization of light in a quasi-isotropic laser,” J. Opt. Soc. Am. B 4, 1276–1280 (1987).
[CrossRef]

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
[CrossRef]

Stephens, M.

Steward, G.

P. King and G. Steward, “Metrology with an optical maser,” New Sci. 17, 180–182 (1963).

Suzuki, T.

T. Suzuki, T. Muto, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked laser diode interferometer,” Opt. Eng. 38, 543–548 (1999).
[CrossRef]

Thienpont, H.

Veretennicoff, I.

White, M. B.

W. M. Doyle and M. B. White, “Effects of atomic degeneracy and cavity anisotropy on the behavior of a gas laser,” Phys. Rev. 147, 359–367 (1966).
[CrossRef]

Wiemen, C.

Xiong, W.

Yamamoto, Y.

S. Koboyashi, Y. Yamamoto, and M. Ito, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

Zhang, S.

L. Fei and S. Zhang, “Laser feedback technical for precise retardation measurement,” Chin. Phys. Lett. 23, 2974–2977 (2006).
[CrossRef]

L. Fei, S. Zhang, Y. Li, and J. Zhu, “Polarization control in a He–Ne laser using birefringence feedback,” Opt. Express 13, 3117–3122 (2005).
[CrossRef]

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246, 505–510 (2005).
[CrossRef]

Zhu, J.

Zong, X.

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246, 505–510 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Li, A. Hohl, G. Athanasios, H. Hong, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Chin. Phys. Lett.

L. Fei and S. Zhang, “Laser feedback technical for precise retardation measurement,” Chin. Phys. Lett. 23, 2974–2977 (2006).
[CrossRef]

IEEE J. Quantum Electron.

S. Donati and G. Giuliani, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
[CrossRef]

S. Merlo and S. Donati, “Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997).
[CrossRef]

S. Koboyashi, Y. Yamamoto, and M. Ito, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 18, 582–595 (1982).
[CrossRef]

IEEE Trans. Instrum. Meas.

S. Shinohara, “Compact and versatile self-mixing type semiconductor laser Doppler velocimeters with direction discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989).
[CrossRef]

S. Donati, L. Fazoni, and S. Merlo, “A PC-interfaced, compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996).
[CrossRef]

J. Opt. Soc. Am. B

New Sci.

P. King and G. Steward, “Metrology with an optical maser,” New Sci. 17, 180–182 (1963).

Opt. Commun.

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246, 505–510 (2005).
[CrossRef]

Opt. Eng.

T. Suzuki, T. Muto, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked laser diode interferometer,” Opt. Eng. 38, 543–548 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Philips Res. Rep. Suppl.

H. de Lang, “Polarization properties of optical resonators passive and active,” Philips Res. Rep. Suppl. 8, 1–7 (1967).

Phys. Rep.

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous lasers with axial magnetic fields. II. Experimental,” Phys. Rep. 141, 237–245 (1966).
[CrossRef]

Phys. Rev.

E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
[CrossRef]

W. M. Doyle and M. B. White, “Effects of atomic degeneracy and cavity anisotropy on the behavior of a gas laser,” Phys. Rev. 147, 359–367 (1966).
[CrossRef]

Phys. Rev. A

G. Roparsa, A. Le Floch, and R. Le Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

Phys. Rev. Lett.

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
[CrossRef]

A. L. Floch, G. Ropars, J. M. Lenormand, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

T. Mukai and K. Otsuka, “New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity,” Phys. Rev. Lett. 55, 1711–1714 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for polarization flipping: D1, D2, photo detectors; S, birefringent component (quartz crystal); M1, M2, high reflectors; ME, mirror; PZT, piezoelectric transducer; P, polarizer; AMP, voltage amplification; DA, digital-to-analog signal conversion; AD, analog-to-digital signal conversion.

Fig. 2.
Fig. 2.

Phenomenon of polarization flipping and locking: a, waveform of polarization flipping and b, locking phenomenon of polarization flipping.

Fig. 3.
Fig. 3.

Effective gain at different lengths of the external cavity: a, locking phenomenon of polarization flipping at the frequency difference of 29.4 MHz when phase retardation of the birefringent component is 1.37° and b, polarization flipping at the frequency difference of 30 MHz when the phase retardation is 1.37°.

Fig. 4.
Fig. 4.

Experimental setup for releasing the locking of polarization flipping.

Fig. 5.
Fig. 5.

Experimental results for releasing the locking of polarization flipping: 1, laser intensity; 2, waveform of polarization flipping; 3, PZT scanning voltage.

Tables (1)

Tables Icon

Table 1. Resonance Mode of Laser in Different Conditions

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Reffo=R2+2r2ret2cos(2kl),Reffe=R2+2r2ret2cos(2kl+2δ),
αo=αoαeθoeβe,αe=αeαoθeoβo,
αo=Fo[Zi(ξo)Zi(0)1η],αe=Fe[Zi(ξe)Zi(0)1η],
Zi(ξ)=πexp(ξ2),Fo=η2πΔ[0.003+(0.006+(1Reffo)0.5+0.007],ξo=νoν0109,ξe=νeν0109,Fe=η2πΔ[0.003+(0.006+(1Reffe)0.5+0.007],
βo=FoπγaγbHor8Zi(0)[m|𝒫mm|2]2[B+C+D],βe=FeπγaγbHer8Zi(0)[m|𝒫mm|2]2[B+C+D],
𝒫m,m=𝒫[(Jam+1)(Ja+m+1)]1/2,𝒫m,m+1=12i𝒫[(Jam+1)(Ja+m+1)]1/2,𝒫m,m1=12i𝒫[(Jam+1)(Jam2)]1/2,B=JaJa|𝒫m,m|2[|𝒫m+1,m|2+|𝒫m1,m|2],C=JaJa|𝒫m,m|2[|𝒫m,m1|2+|𝒫m,m+1|2],D=JaJa𝒫m,m[𝒫m,m1𝒫m1,m1𝒫m1,m+𝒫m,m+1𝒫m+1,m+1𝒫m+1,m],Ho=[D(0)+D(ξo)][Da(0)+Db(0)]N¯,He=[D(0)+D(ξe)][Da(0)+Db(0)]N¯,D(ν)=1/(γ+iν109),Da(ν)=1/(γa+iν109),Db(ν)=1/(γb+iν109),
θoe=Feπγaγb8Zi(0)[m|𝒫mm|2]2[BMoer+CMoer],θeo=Foπγaγb8Zi(0)[m|𝒫mm|2]2[BMeor+CMeor],Moe=Db(0)[D(ξeξo2)+D(ξoe)]+Da(ξeξo)[N¯D(ξeξo2)+N2D(ξo)],ξoe=(ξo+ξe)/2,Moe=Da(0)[D(ξeξo2)+D(ξoe)]+Db(ξeξo)[N¯D(ξeξo2)+N2D(ξo)],Meo=Db(0)[D(ξoξe2)+D(ξoe)]+Da(ξoξe)[N¯D(ξoξe2)+N2D(ξe)],Meo=Da(0)[D(ξoξe2)+D(ξoe)]+Db(ξoξe)[N¯D(ξoξe2)+N2D(ξe)].

Metrics