Abstract

The diffractive optical element blazed grating is proposed as the beam splitter for autostereoscopic displays in this study. With Lithographie Galvanoformung Abformung and inductively coupled plasma reactive-ion etching, a four-level blazed grating structure is produced. Moreover, highly translucent polydimethylsiloxane is transformed into symmetrical four-level blazed grating films. The experimental results show that the film can successfully transmit the left and the right images to the accurate positions, and the diffraction efficiency is 70.4% and the contrast ratio is above 80%, presenting the original stereoscopic image without it being affected by brightness and crosstalk. In the experiment of stereoscopic imaging, both the left and the right images could be clearly acquired, which proves the feasibility of blazed gratings as practical for the beam splitter of autostereoscopic displays.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. E. Ives, “Parallax stereogram and process of making same,” U. S. patent 725,567 (1903).
  2. H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear cross lenticular 3-D display without eyeglasses,” Proc. SPIE 3295, 193–202 (1998).
    [CrossRef]
  3. C. Berkel, “Image preparation for 3D LCD,” Proc. SPIE 3639, 84–91 (1999).
    [CrossRef]
  4. H. M. Ozaktas and L. Onural, Three-Dimensional Television (Springer, 2008).
  5. V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1, 347–353 (2005).
    [CrossRef]
  6. C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50, 1610–1616 (2008).
    [CrossRef]
  7. M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
    [CrossRef]
  8. M. Salmimaa and T. Järvenpää, “3-D crosstalk and luminance uniformity from angular luminance profiles of multiview autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 1033–1040 (2008).
    [CrossRef]
  9. P. Downen, “A closer look at flat-panel-display measurement standards and trends,” Inf. Disp. 22, 16–21(2006).
  10. C. Y. Chen, Q. L. Deng, and H. C. Wu, “A high-brightness diffractive stereoscopic display technology,” Displays 31, 169–174 (2010).
    [CrossRef]
  11. W. C. Su, C. Y. Chen, and Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19, 9942–9949 (2011).
    [CrossRef]
  12. C. Y. Chen, Q. L. Deng, and H. H. Lin, “Design of a symmetric blazed grating sheet embedded in autostereoscopic display,” Opt. Lett. 36, 3422–3424 (2011).
    [CrossRef]
  13. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
    [CrossRef]
  14. S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsys. Technol. 13, 465–474 (2007).
    [CrossRef]
  15. S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrate waveguides,” J. Micromech. Microeng. 20, 087002 (2010).
    [CrossRef]
  16. R. Horváth, L. R Lindvold, and N. B Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
    [CrossRef]
  17. L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29, 91–95 (2000).
    [CrossRef]
  18. M. C. Chou, H. Yang, and S. H. Yeh, “Microcomposite electroforming for LIGA technology,” Microsys. Technol. 7, 36–39 (2001).
    [CrossRef]
  19. Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
    [CrossRef]
  20. M. Mizuhata, T. Miyake, Y. Nomoto, and S. Deki, “Deep reactive ion etching (deep-RIE) process for fabrication of ordered structural metal oxide thin films by the liquid phase infiltration method,” Microelectron. Eng. 85, 355–364 (2008).
    [CrossRef]
  21. G. Swanson and N. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
  22. C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31, 99–103 (2010).
    [CrossRef]

2011

2010

C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31, 99–103 (2010).
[CrossRef]

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrate waveguides,” J. Micromech. Microeng. 20, 087002 (2010).
[CrossRef]

C. Y. Chen, Q. L. Deng, and H. C. Wu, “A high-brightness diffractive stereoscopic display technology,” Displays 31, 169–174 (2010).
[CrossRef]

2009

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
[CrossRef]

2008

M. Mizuhata, T. Miyake, Y. Nomoto, and S. Deki, “Deep reactive ion etching (deep-RIE) process for fabrication of ordered structural metal oxide thin films by the liquid phase infiltration method,” Microelectron. Eng. 85, 355–364 (2008).
[CrossRef]

C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50, 1610–1616 (2008).
[CrossRef]

M. Salmimaa and T. Järvenpää, “3-D crosstalk and luminance uniformity from angular luminance profiles of multiview autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 1033–1040 (2008).
[CrossRef]

2007

S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsys. Technol. 13, 465–474 (2007).
[CrossRef]

2006

P. Downen, “A closer look at flat-panel-display measurement standards and trends,” Inf. Disp. 22, 16–21(2006).

2005

V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1, 347–353 (2005).
[CrossRef]

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
[CrossRef]

2003

R. Horváth, L. R Lindvold, and N. B Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

2001

M. C. Chou, H. Yang, and S. H. Yeh, “Microcomposite electroforming for LIGA technology,” Microsys. Technol. 7, 36–39 (2001).
[CrossRef]

2000

L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29, 91–95 (2000).
[CrossRef]

1999

C. Berkel, “Image preparation for 3D LCD,” Proc. SPIE 3639, 84–91 (1999).
[CrossRef]

1998

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear cross lenticular 3-D display without eyeglasses,” Proc. SPIE 3295, 193–202 (1998).
[CrossRef]

1989

G. Swanson and N. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

1986

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[CrossRef]

Arai, J.

Azmayesh-Fard, S. M.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrate waveguides,” J. Micromech. Microeng. 20, 087002 (2010).
[CrossRef]

Becker, E. W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[CrossRef]

Berkel, C.

C. Berkel, “Image preparation for 3D LCD,” Proc. SPIE 3639, 84–91 (1999).
[CrossRef]

Chang, M. C.

C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50, 1610–1616 (2008).
[CrossRef]

Chen, C. Y.

C. Y. Chen, Q. L. Deng, and H. H. Lin, “Design of a symmetric blazed grating sheet embedded in autostereoscopic display,” Opt. Lett. 36, 3422–3424 (2011).
[CrossRef]

W. C. Su, C. Y. Chen, and Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19, 9942–9949 (2011).
[CrossRef]

C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31, 99–103 (2010).
[CrossRef]

C. Y. Chen, Q. L. Deng, and H. C. Wu, “A high-brightness diffractive stereoscopic display technology,” Displays 31, 169–174 (2010).
[CrossRef]

C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50, 1610–1616 (2008).
[CrossRef]

Chen, S. C.

S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsys. Technol. 13, 465–474 (2007).
[CrossRef]

Chen, Y. M.

C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50, 1610–1616 (2008).
[CrossRef]

Cheng, C. H.

S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsys. Technol. 13, 465–474 (2007).
[CrossRef]

Cheng, Z. S.

C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31, 99–103 (2010).
[CrossRef]

Chou, M. C.

M. C. Chou, H. Yang, and S. H. Yeh, “Microcomposite electroforming for LIGA technology,” Microsys. Technol. 7, 36–39 (2001).
[CrossRef]

Colli, A.

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
[CrossRef]

Deki, S.

M. Mizuhata, T. Miyake, Y. Nomoto, and S. Deki, “Deep reactive ion etching (deep-RIE) process for fabrication of ordered structural metal oxide thin films by the liquid phase infiltration method,” Microelectron. Eng. 85, 355–364 (2008).
[CrossRef]

Deng, Q. L.

C. Y. Chen, Q. L. Deng, and H. H. Lin, “Design of a symmetric blazed grating sheet embedded in autostereoscopic display,” Opt. Lett. 36, 3422–3424 (2011).
[CrossRef]

C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31, 99–103 (2010).
[CrossRef]

C. Y. Chen, Q. L. Deng, and H. C. Wu, “A high-brightness diffractive stereoscopic display technology,” Displays 31, 169–174 (2010).
[CrossRef]

Downen, P.

P. Downen, “A closer look at flat-panel-display measurement standards and trends,” Inf. Disp. 22, 16–21(2006).

Ehrfeld, W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[CrossRef]

Fasoli, A.

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
[CrossRef]

Ferrari, A. C.

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
[CrossRef]

Flaim, E.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrate waveguides,” J. Micromech. Microeng. 20, 087002 (2010).
[CrossRef]

Flewitt, A. J.

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
[CrossRef]

Fu, Y. Q.

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
[CrossRef]

Hagmann, P.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[CrossRef]

Hopkins, L. M.

L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29, 91–95 (2000).
[CrossRef]

Horng, L.

S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsys. Technol. 13, 465–474 (2007).
[CrossRef]

Horváth, R.

R. Horváth, L. R Lindvold, and N. B Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

Hsieh, T. Y.

C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31, 99–103 (2010).
[CrossRef]

Inoguchi, K.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear cross lenticular 3-D display without eyeglasses,” Proc. SPIE 3295, 193–202 (1998).
[CrossRef]

Ives, F. E.

F. E. Ives, “Parallax stereogram and process of making same,” U. S. patent 725,567 (1903).

Järvenpää, T.

M. Salmimaa and T. Järvenpää, “3-D crosstalk and luminance uniformity from angular luminance profiles of multiview autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 1033–1040 (2008).
[CrossRef]

Javidi, B.

V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1, 347–353 (2005).
[CrossRef]

Ke, M. D.

C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50, 1610–1616 (2008).
[CrossRef]

Kelly, J. T.

L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29, 91–95 (2000).
[CrossRef]

Kim, D. S.

V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1, 347–353 (2005).
[CrossRef]

Kim, S. K.

V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1, 347–353 (2005).
[CrossRef]

Kobayashi, M.

Larsen, N. B

R. Horváth, L. R Lindvold, and N. B Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

Lin, C. C.

C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50, 1610–1616 (2008).
[CrossRef]

Lin, H. H.

Lin, Y. C.

S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsys. Technol. 13, 465–474 (2007).
[CrossRef]

Lindvold, L. R

R. Horváth, L. R Lindvold, and N. B Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

Luo, J. K.

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
[CrossRef]

Maner, A.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[CrossRef]

Matsumura, S.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear cross lenticular 3-D display without eyeglasses,” Proc. SPIE 3295, 193–202 (1998).
[CrossRef]

McMullin, J. N.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrate waveguides,” J. Micromech. Microeng. 20, 087002 (2010).
[CrossRef]

Milne, W. I.

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
[CrossRef]

Miyake, T.

M. Mizuhata, T. Miyake, Y. Nomoto, and S. Deki, “Deep reactive ion etching (deep-RIE) process for fabrication of ordered structural metal oxide thin films by the liquid phase infiltration method,” Microelectron. Eng. 85, 355–364 (2008).
[CrossRef]

Mizuhata, M.

M. Mizuhata, T. Miyake, Y. Nomoto, and S. Deki, “Deep reactive ion etching (deep-RIE) process for fabrication of ordered structural metal oxide thin films by the liquid phase infiltration method,” Microelectron. Eng. 85, 355–364 (2008).
[CrossRef]

Morishima, H.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear cross lenticular 3-D display without eyeglasses,” Proc. SPIE 3295, 193–202 (1998).
[CrossRef]

Münchmeyer, D.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[CrossRef]

Nomoto, Y.

M. Mizuhata, T. Miyake, Y. Nomoto, and S. Deki, “Deep reactive ion etching (deep-RIE) process for fabrication of ordered structural metal oxide thin films by the liquid phase infiltration method,” Microelectron. Eng. 85, 355–364 (2008).
[CrossRef]

Nose, H.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear cross lenticular 3-D display without eyeglasses,” Proc. SPIE 3295, 193–202 (1998).
[CrossRef]

Okano, F.

Okui, M.

Onural, L.

H. M. Ozaktas and L. Onural, Three-Dimensional Television (Springer, 2008).

Ozaktas, H. M.

H. M. Ozaktas and L. Onural, Three-Dimensional Television (Springer, 2008).

Prasad, A. K.

L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29, 91–95 (2000).
[CrossRef]

Salmimaa, M.

M. Salmimaa and T. Järvenpää, “3-D crosstalk and luminance uniformity from angular luminance profiles of multiview autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 1033–1040 (2008).
[CrossRef]

Saveljev, V. V.

V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1, 347–353 (2005).
[CrossRef]

Son, J. Y.

V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1, 347–353 (2005).
[CrossRef]

Su, W. C.

W. C. Su, C. Y. Chen, and Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19, 9942–9949 (2011).
[CrossRef]

C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31, 99–103 (2010).
[CrossRef]

Swanson, G.

G. Swanson and N. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Taniguchi, N.

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear cross lenticular 3-D display without eyeglasses,” Proc. SPIE 3295, 193–202 (1998).
[CrossRef]

Veldkamp, N. B.

G. Swanson and N. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Wang, Y. F.

Wexler, A. S.

L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29, 91–95 (2000).
[CrossRef]

Wu, H. C.

C. Y. Chen, Q. L. Deng, and H. C. Wu, “A high-brightness diffractive stereoscopic display technology,” Displays 31, 169–174 (2010).
[CrossRef]

Wu, J. C.

S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsys. Technol. 13, 465–474 (2007).
[CrossRef]

Yang, H.

M. C. Chou, H. Yang, and S. H. Yeh, “Microcomposite electroforming for LIGA technology,” Microsys. Technol. 7, 36–39 (2001).
[CrossRef]

Yeh, S. H.

M. C. Chou, H. Yang, and S. H. Yeh, “Microcomposite electroforming for LIGA technology,” Microsys. Technol. 7, 36–39 (2001).
[CrossRef]

Appl. Opt.

Displays

C. Y. Chen, Q. L. Deng, and H. C. Wu, “A high-brightness diffractive stereoscopic display technology,” Displays 31, 169–174 (2010).
[CrossRef]

C. Y. Chen, T. Y. Hsieh, Q. L. Deng, W. C. Su, and Z. S. Cheng, “Design of a novel symmetric microprism array for dual-view display,” Displays 31, 99–103 (2010).
[CrossRef]

Exp. Fluids

L. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29, 91–95 (2000).
[CrossRef]

Inf. Disp.

P. Downen, “A closer look at flat-panel-display measurement standards and trends,” Inf. Disp. 22, 16–21(2006).

J. Disp. Technol.

V. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol. 1, 347–353 (2005).
[CrossRef]

J. Micromech. Microeng.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrate waveguides,” J. Micromech. Microeng. 20, 087002 (2010).
[CrossRef]

R. Horváth, L. R Lindvold, and N. B Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

J. Soc. Inf. Disp.

M. Salmimaa and T. Järvenpää, “3-D crosstalk and luminance uniformity from angular luminance profiles of multiview autostereoscopic 3-D displays,” J. Soc. Inf. Disp. 16, 1033–1040 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

Y. Q. Fu, A. Colli, A. Fasoli, J. K. Luo, A. J. Flewitt, A. C. Ferrari, and W. I. Milne, “Deep reactive ion etching as a tool for nanostructure fabrication,” J. Vac. Sci. Technol. B 27, 1520–1526 (2009).
[CrossRef]

Microelectron. Eng.

M. Mizuhata, T. Miyake, Y. Nomoto, and S. Deki, “Deep reactive ion etching (deep-RIE) process for fabrication of ordered structural metal oxide thin films by the liquid phase infiltration method,” Microelectron. Eng. 85, 355–364 (2008).
[CrossRef]

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[CrossRef]

Microsys. Technol.

S. C. Chen, Y. C. Lin, J. C. Wu, L. Horng, and C. H. Cheng, “Parameter optimization for an ICP deep silicon etching system,” Microsys. Technol. 13, 465–474 (2007).
[CrossRef]

M. C. Chou, H. Yang, and S. H. Yeh, “Microcomposite electroforming for LIGA technology,” Microsys. Technol. 7, 36–39 (2001).
[CrossRef]

Microw. Opt. Technol. Lett.

C. Y. Chen, M. C. Chang, M. D. Ke, C. C. Lin, and Y. M. Chen, “A novel high brightness parallax barrier stereoscopy technology using a reflective crown grating,” Microw. Opt. Technol. Lett. 50, 1610–1616 (2008).
[CrossRef]

Opt. Eng.

G. Swanson and N. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Opt. Express

Opt. Lett.

Proc. SPIE

H. Morishima, H. Nose, N. Taniguchi, K. Inoguchi, and S. Matsumura, “Rear cross lenticular 3-D display without eyeglasses,” Proc. SPIE 3295, 193–202 (1998).
[CrossRef]

C. Berkel, “Image preparation for 3D LCD,” Proc. SPIE 3639, 84–91 (1999).
[CrossRef]

Other

H. M. Ozaktas and L. Onural, Three-Dimensional Television (Springer, 2008).

F. E. Ives, “Parallax stereogram and process of making same,” U. S. patent 725,567 (1903).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Diffraction autostereoscopic display technology; (b) symmetrical pairs of the odd and the even pixels of the blazed grating; (c) symmetrical four-level blazed grating corresponding to the subpixel (532 nm); (d) structure of the single four-level blazed grating.

Fig. 2.
Fig. 2.

Two etching procedures. PR, photoresist.

Fig. 3.
Fig. 3.

Scanning electron microscope image of four-level blazed grating etching.

Fig. 4.
Fig. 4.

Optical measuring system.

Fig. 5.
Fig. 5.

Left and the right spectroscopic images.

Fig. 6.
Fig. 6.

Spectroscopic outcome of stereoscopic images.

Tables (2)

Tables Icon

Table 1. Surface Profile Data of the Grating

Tables Icon

Table 2. CR of the Left and the Right Viewing Angles

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ m = arctan [ ( a + b ) / 2 D ] ,
m λ = T × n × sin θ m ,
η = [ I out / ( I in / 2 ) ] × 100 % .
CR = ( L max L min ) ( L max + L min ) × 100 % .

Metrics