Abstract

Broadband mid-infrared supercontinuum pulses were generated directly from a short piece of active fiber in a single-mode Tm-doped fiber amplifier. The broadband mid-infrared pulses have an extremely high spectral flatness with 600nm FWHM bandwidth (from 1.9 μm to 2.5 μm), >15kW peak power, and >20GW/cm2 laser peak intensity. This new approach exhibits a significantly different physical mechanism from other supercontinuum generation demonstrations in the literature, in which usually a piece of passive fiber was used for nonlinear spectral broadening. The physical mechanism for the broadband mid-infrared supercontinuum generation in this approach has been attributed to a combined effect of two superradiative processes of Tm3+ ions (i.e., the F43H63 transition covering the 1.82.1μm spectral region and the H43H53 transition covering the 2.22.5μm spectral region), and also nonlinear optical processes as well in the Tm-doped gain fiber. The spectra of the mid-infrared supercontinuum pulses were further broadened in a 2 m chalcogenide fiber with 20 dB bandwidth 1100nm and a 3 m fluoride fiber with 20 dB bandwidth 2600nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
  2. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
    [CrossRef]
  3. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
  4. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
    [CrossRef]
  5. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
    [CrossRef]
  6. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
    [CrossRef]
  7. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33, 2122–2124 (2008).
    [CrossRef]
  8. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
    [CrossRef]
  9. O. Kulkarni, V. Alexander, M. Kumar, M. N. Islam, M. J. Freeman, and F. L. Terry, “Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-doped amplifier with fused silica SC input,” in CLEO 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThD2.
  10. J. Geng, Q. Wang, Z. Jiang, T. Luo, S. Jiang, and G. Czarnecki, “Kilowatt-peak-power single-frequency pulsed fiber laser near 2 μm,” Opt. Lett. 36, 2293–2295 (2011).
    [CrossRef]
  11. R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm-doped fluorozirconate fiber lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).
  12. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm,” Opt. Lett. 19, 883–885 (1994).
    [CrossRef]
  13. Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35, 3360–3362 (2010).
    [CrossRef]
  14. L. F. Santos, A. Ganjoo, H. Jain, and R. M. Almeida, “Optical and spectroscopic characterization of germanium selenide glass films,” J. Non-Cryst. Solids 355, 1984–1988 (2009).
    [CrossRef]
  15. J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
    [CrossRef]

2011 (1)

2010 (2)

2009 (1)

L. F. Santos, A. Ganjoo, H. Jain, and R. M. Almeida, “Optical and spectroscopic characterization of germanium selenide glass films,” J. Non-Cryst. Solids 355, 1984–1988 (2009).
[CrossRef]

2008 (1)

2007 (2)

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

2006 (2)

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[CrossRef]

2004 (1)

2002 (1)

1994 (1)

1991 (1)

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm-doped fluorozirconate fiber lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).

1970 (1)

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Aggarwal, I. D.

Alexander, V.

O. Kulkarni, V. Alexander, M. Kumar, M. N. Islam, M. J. Freeman, and F. L. Terry, “Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-doped amplifier with fused silica SC input,” in CLEO 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThD2.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Almeida, R. M.

L. F. Santos, A. Ganjoo, H. Jain, and R. M. Almeida, “Optical and spectroscopic characterization of germanium selenide glass films,” J. Non-Cryst. Solids 355, 1984–1988 (2009).
[CrossRef]

Biancalana, F.

Birks, T.

Brambilla, G.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Carter, J. N.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm-doped fluorozirconate fiber lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).

Coen, S.

Cumberland, B. A.

Czarnecki, G.

Dudley, J. M.

Ebendorff-Heidepriem, H.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Eggleton, B. J.

Esterowitz, L.

Feng, X.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Finazzi, V.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Flanagan, J. C.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Freeman, M. J.

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[CrossRef]

O. Kulkarni, V. Alexander, M. Kumar, M. N. Islam, M. J. Freeman, and F. L. Terry, “Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-doped amplifier with fused silica SC input,” in CLEO 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThD2.

Ganjoo, A.

L. F. Santos, A. Ganjoo, H. Jain, and R. M. Almeida, “Optical and spectroscopic characterization of germanium selenide glass films,” J. Non-Cryst. Solids 355, 1984–1988 (2009).
[CrossRef]

Geng, J.

Genty, G.

Grossard, N.

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Hanna, D. C.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm-doped fluorozirconate fiber lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).

Horak, P.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Hu, J.

Islam, M. N.

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[CrossRef]

O. Kulkarni, V. Alexander, M. Kumar, M. N. Islam, M. J. Freeman, and F. L. Terry, “Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-doped amplifier with fused silica SC input,” in CLEO 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThD2.

Jain, H.

L. F. Santos, A. Ganjoo, H. Jain, and R. M. Almeida, “Optical and spectroscopic characterization of germanium selenide glass films,” J. Non-Cryst. Solids 355, 1984–1988 (2009).
[CrossRef]

Jiang, S.

Jiang, Z.

Joly, N.

Knight, J.

Kulkarni, O.

O. Kulkarni, V. Alexander, M. Kumar, M. N. Islam, M. J. Freeman, and F. L. Terry, “Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-doped amplifier with fused silica SC input,” in CLEO 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThD2.

Kulkarni, O. P.

Kumar, M.

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[CrossRef]

O. Kulkarni, V. Alexander, M. Kumar, M. N. Islam, M. J. Freeman, and F. L. Terry, “Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-doped amplifier with fused silica SC input,” in CLEO 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThD2.

Leong, J.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Lucas, P.

Luo, T.

Maillotte, H.

Mazé, G.

Menyuk, C. R.

Monro, T. M.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Petropoulos, P.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Pinto, J. F.

Poletti, F.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Popov, S. V.

Poulain, M.

Price, J.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Provino, L.

Richardson, D. J.

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

Rosenblatt, G. H.

Russell, P.

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Sanghera, J. S.

Santos, L. F.

L. F. Santos, A. Ganjoo, H. Jain, and R. M. Almeida, “Optical and spectroscopic characterization of germanium selenide glass films,” J. Non-Cryst. Solids 355, 1984–1988 (2009).
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Shaw, L. B.

Smart, R. G.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm-doped fluorozirconate fiber lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).

Taylor, J. R.

Terry, F. L.

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[CrossRef]

O. Kulkarni, V. Alexander, M. Kumar, M. N. Islam, M. J. Freeman, and F. L. Terry, “Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-doped amplifier with fused silica SC input,” in CLEO 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThD2.

Travers, J. C.

Tropper, A. C.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm-doped fluorozirconate fiber lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).

Wadsworth, W.

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Wang, Q.

Windeler, R. S.

Xia, C.

Yang, Z.

IEEE J. Sel. Top. Quantum Electron. (1)

J. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13738–749 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550 nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

L. F. Santos, A. Ganjoo, H. Jain, and R. M. Almeida, “Optical and spectroscopic characterization of germanium selenide glass films,” J. Non-Cryst. Solids 355, 1984–1988 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm-doped fluorozirconate fiber lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Other (1)

O. Kulkarni, V. Alexander, M. Kumar, M. N. Islam, M. J. Freeman, and F. L. Terry, “Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-doped amplifier with fused silica SC input,” in CLEO 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThD2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The experimental setup. SMF-28 fiber: 5m. Tm-doped fiber: 50cm.

Fig. 2.
Fig. 2.

Spectral evolution of pump pulses in the passive fiber at different pump power: 100 mW (upper left), 250 mW (upper right), 400 mW (lower left), and 1 W (lower right).

Fig. 3.
Fig. 3.

Pulse shape evolution in the passive fiber at different wavelength: 1.55 μm (upper left), 1.65 μm (upper right), 1.75 μm (lower left), and 1.95 μm (lower right).

Fig. 4.
Fig. 4.

Typical spectra of the mid-infrared supercontinuum pulses measured by a monochromator at pulse repetition rate of 10 kHz and 20 kHz.

Fig. 5.
Fig. 5.

Typical oscilloscope trace of the mid-infrared pulses at two different wavelengths. Left: 1.9 μm. Right: 2.2 μm.

Fig. 6.
Fig. 6.

Average output power and the estimated peak power of the mid-infrared pulses as a function of pump power at 10 kHz repetition rate. We assume the pulse width of the mid-infrared pulses is 1 ns that was the resolution limit of our detection system.

Fig. 7.
Fig. 7.

Energy diagram of Tm3+ ion. Some energy transitions that could be involved in the broadband supercontinuum generation process in this approach are indicated in the diagram.

Fig. 8.
Fig. 8.

Red emission spectra in a Tm-doped fiber amplifier associated with the mid-infrared supercontinuum generation when pumped with a laser pulse at 1.55 μm.

Fig. 9.
Fig. 9.

Spectral broadening in 2 m chalcogenide glass fiber.

Fig. 10.
Fig. 10.

Spectral broadening in 3 m fluoride glass fiber.

Metrics