Abstract

We perform a bidimensional analysis to evaluate the variation of the fluorescence decay of europium thenoyltrifluoroacetonate (EuTTA) with temperature changes. We analyze how a specific thermal distribution modifies the spatial temperature of the sensing film and we study the corresponding fluorescence response using an integral functional of the emission decay. We present experimental results of a thermal distribution registered with the EuTTA-based thermal-to-visible conversion method. Furthermore, we analyze the spatial and temporal response of the proposed sensing element by using heat-transfer theory. Based on the presented analysis, we establish the optimal thermal and physical design for the sensing element of the proposed thermal-to-visible converter.

© 2012 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription