Abstract

We have fabricated a very narrow bandpass tunable terahertz (THz) filter based on a one-dimensional photonic crystal cavity. Since the filter consists of silicon wafers and air spacers, it has a very high quality factor of about 1500. The full width at half maximum (FWHM) of the passband is only about 200 MHz, and the peak transmission is higher than 4dB. Besides, the central frequency can be tuned rapidly over the entire bandgap with the length of cavity adjusted by a motorized linear stage. Further analytical calculations indicate that a high-Q tunable filter with both high peak transmission and wide tunable range is possible if thinner silicon layers are used.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [Crossref]
  2. D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
    [Crossref]
  3. R. Mendis, A. Nag, F. Chen, and D. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
    [Crossref]
  4. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
    [Crossref]
  5. H. Nemec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
    [Crossref]
  6. Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
    [Crossref]
  7. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A: Mater. Sci. Process. 74, 291–293 (2002).
    [Crossref]
  8. N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
    [Crossref]
  9. C. Jansen, S. Wietzke, V. Astley, D. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
    [Crossref]
  10. N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111–7114 (2005).
    [Crossref]
  11. W. Withayachumnankul, B. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
    [Crossref]
  12. H. Němec, P. Kužel, F. Garet, and L. Duvillaret, “Time-domain terahertz study of defect formation in one-dimensional photonic crystals,” Appl. Opt. 43, 1965–1970 (2004).
    [Crossref]
  13. H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
    [Crossref]
  14. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
    [Crossref]
  15. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
    [Crossref]
  16. J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010).
    [Crossref]
  17. G. Grüner, ed., Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer-Verlag, 1998).

2010 (3)

R. Mendis, A. Nag, F. Chen, and D. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

C. Jansen, S. Wietzke, V. Astley, D. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010).
[Crossref]

2009 (3)

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
[Crossref]

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[Crossref]

N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
[Crossref]

2008 (1)

W. Withayachumnankul, B. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[Crossref]

2005 (2)

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111–7114 (2005).
[Crossref]

H. Nemec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
[Crossref]

2004 (3)

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

H. Němec, P. Kužel, F. Garet, and L. Duvillaret, “Time-domain terahertz study of defect formation in one-dimensional photonic crystals,” Appl. Opt. 43, 1965–1970 (2004).
[Crossref]

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[Crossref]

2003 (1)

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

2002 (2)

B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A: Mater. Sci. Process. 74, 291–293 (2002).
[Crossref]

2000 (1)

H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[Crossref]

Abbott, D.

W. Withayachumnankul, B. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[Crossref]

Ando, A.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111–7114 (2005).
[Crossref]

Astley, V.

C. Jansen, S. Wietzke, V. Astley, D. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Basov, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Baumgärtner, S.

H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[Crossref]

Chen, F.

R. Mendis, A. Nag, F. Chen, and D. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

Cho, M.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[Crossref]

Cumming, D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Dawson, P.

H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[Crossref]

Dobbertin, T.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A: Mater. Sci. Process. 74, 291–293 (2002).
[Crossref]

Dressel, M.

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Duvillaret, L.

Fang, N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Feldmann, J.

H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[Crossref]

Ferguson, B.

B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Fischer, B.

W. Withayachumnankul, B. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[Crossref]

Garet, F.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[Crossref]

H. Němec, P. Kužel, F. Garet, and L. Duvillaret, “Time-domain terahertz study of defect formation in one-dimensional photonic crystals,” Appl. Opt. 43, 1965–1970 (2004).
[Crossref]

Ginzburg, N. S.

N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
[Crossref]

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Han, H.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[Crossref]

Han, Y.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[Crossref]

Hecker, N. E.

H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[Crossref]

Hempel, M.

H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[Crossref]

Jansen, C.

C. Jansen, S. Wietzke, V. Astley, D. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

Jung, E.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[Crossref]

Kamada, K.

N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
[Crossref]

Kammoun, A.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A: Mater. Sci. Process. 74, 291–293 (2002).
[Crossref]

Kirihara, S.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111–7114 (2005).
[Crossref]

Knobloch, P.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A: Mater. Sci. Process. 74, 291–293 (2002).
[Crossref]

Koch, M.

C. Jansen, S. Wietzke, V. Astley, D. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
[Crossref]

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A: Mater. Sci. Process. 74, 291–293 (2002).
[Crossref]

H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[Crossref]

Kopschinski, O.

Kuzel, P.

Kužel, P.

H. Němec, P. Kužel, F. Garet, and L. Duvillaret, “Time-domain terahertz study of defect formation in one-dimensional photonic crystals,” Appl. Opt. 43, 1965–1970 (2004).
[Crossref]

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[Crossref]

Li, J.

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010).
[Crossref]

Libon, H.

H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[Crossref]

Linfield, E. H.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Malkin, A. M.

N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
[Crossref]

Matsumoto, N.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111–7114 (2005).
[Crossref]

Mendis, R.

R. Mendis, A. Nag, F. Chen, and D. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

Mittleman, D.

R. Mendis, A. Nag, F. Chen, and D. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

C. Jansen, S. Wietzke, V. Astley, D. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

Miyamoto,

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111–7114 (2005).
[Crossref]

Moon, K.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[Crossref]

Nag, A.

R. Mendis, A. Nag, F. Chen, and D. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

Nakagawa, T.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111–7114 (2005).
[Crossref]

Nemec, H.

Padilla, W.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Park, H.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[Crossref]

Pashkin, A.

Peskov, N. Y.

N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
[Crossref]

Rauly, D.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[Crossref]

Richard, J.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[Crossref]

Sakabe, Y.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111–7114 (2005).
[Crossref]

Schultz, S.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Sebastian, M. T.

Sergeev, A. S.

N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
[Crossref]

Smith, D. R.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Soga, Y.

N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
[Crossref]

Sun, C.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Turchinovich, D.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A: Mater. Sci. Process. 74, 291–293 (2002).
[Crossref]

Vieweg, N.

Wietzke, S.

C. Jansen, S. Wietzke, V. Astley, D. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

Wilk, R.

Withayachumnankul, W.

W. Withayachumnankul, B. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[Crossref]

Wu, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Xavier, P.

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[Crossref]

Zaslavsky, V. Y.

N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
[Crossref]

Zhang, X.

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A: Mater. Sci. Process. 74, 291–293 (2002).
[Crossref]

Appl. Phys. Lett. (6)

N. S. Ginzburg, A. M. Malkin, N. Y. Peskov, A. S. Sergeev, V. Y. Zaslavsky, K. Kamada, and Y. Soga, “Tunable terahertz band planar Bragg reflectors,” Appl. Phys. Lett. 95, 043504 (2009).
[Crossref]

C. Jansen, S. Wietzke, V. Astley, D. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

R. Mendis, A. Nag, F. Chen, and D. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[Crossref]

J. Appl. Phys. (1)

H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[Crossref]

J. Korean Phys. Soc. (1)

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111–7114 (2005).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Opt. Commun. (2)

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010).
[Crossref]

W. Withayachumnankul, B. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

G. Grüner, ed., Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer-Verlag, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Bandgap for six-period 1D photonic crystal with various ratios of dA to dS. dA is the thickness of the air layer, and ds is the thickness of the silicon layer. Bandgaps are denoted with black color. The dashed lines a-g correspond to the different bandgaps considered in following text.

Fig. 2.
Fig. 2.

Power transmittance of two 1D photonic crystal filters as shown in the insert of (b). Dashed line corresponds to the filter with the thickness of the air layer (dA) equal to the thickness of the cavity (dr), which means no defect mode exists. (a) dA=0.6mm, dr=0.95mm. (b) dA=1.0mm, dr=0.89mm. The insert shows the schematic diagram of the tunable THz filter.

Fig. 3.
Fig. 3.

Center frequency and Q factor as a function of the cavity length dr with dA equal to 0.6 mm and 1.0 mm, respectively. The asterisked points and the thick line (denoted by the right arrow) correspond to the Q factor of different dr. The dotted points and the thin line (denoted by the left arrow) correspond to the center frequency. Both asterisked points and dotted points correspond to the measured results.

Fig. 4.
Fig. 4.

The transmission characteristics of the passband of three tunable filters with dA=0.6mm, dA=0.8mm, dA=1.0mm, respectively: (a) PT and (b) bandwidth. The cavity length is varied from 0.7 mm to 1.15 mm.

Fig. 5.
Fig. 5.

The transmission characteristics of the passband of four filters: d (ds=0.51mm, dA=0.26mm), e (ds=0.37mm, dA=0.26mm), f (ds=0.22mm, dA=0.22mm), and g (ds=0.09mm, dA=0.18mm), respectively. The tunable frequency ranges correspond to dashed lines d, e, f, and g in Fig. 1, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Tfilter=TBragg21+RBragg22RBraggcos2(φkdr),
Tpeak=1(1+ABragg/TBragg)2,
ΔfFWHMarcsin[(1RBragg)/4RBragg]πdr/c,

Metrics