Abstract

We demonstrate a simple method to extend the measurable fiber length with a fiber-optic low-coherence technique. This method is based on a cascaded structure of multistage fiber delay line laid in one arm of the low-coherence technique. By choosing different individual stages in the cascaded fiber delay line, the length of the fiber under test can be continuously measured with a different measurement range. The measurement range of 0.81 km and spatial resolution of 60 μm are successfully realized.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Yuan and J. Yang, “Two-loop-based low-coherence multiplexing fiber optic sensor network with a Michelson optical path demodulator,” Opt. Lett. 30, 601–603 (2005).
    [CrossRef]
  2. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49, D30–D61 (2010).
    [CrossRef]
  3. K. Takada, K. Yukimatsu, M. Kobayashi, and J. Noda, “Rayleigh backscatter measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution,” Appl. Phys. Lett. 59, 143–145 (1991).
    [CrossRef]
  4. S. G. Li, X. W. Li, W. Zou, J. G. Shen, Z. H. Hong, and J. P. Chen, “High-resolution measurement of fiber length change with optical low-coherence reflectometer based on a fiber-ring structure,” Appl. Phys. Express 4, 062501 (2011).
    [CrossRef]
  5. D. M. Baney and W. V. Sorin, “Extended-range optical low-coherence reflectometry using a recirculating delay technique,” IEEE Photon. Technol. Lett. 5, 1109–1112 (1993).
    [CrossRef]
  6. D. M. Baney and W. V. Sorin, “Optical low coherence reflectometry with range extension >150  m,” Electron. Lett. 31, 1775–1776 (1995).
    [CrossRef]
  7. M. Zhong, F. Duan, B. Yang, Y. Sun, and S. Ye, “Research on l0 m range absolute measurement of fiber interference,” Proc. SPIE 4920, 478–481 (2002).
    [CrossRef]
  8. S. G. Li, X. W. Li, J. G. Shen, Z. H. Hong, and J. P. Chen, “A new fiber length measurement method with high precision and large absolute length based on FDL,” in Wireless & Optical Communications Conference (WOCC) (IEEE, 2010), pp. 68–70.
    [CrossRef]
  9. J. R. Yang, D. W. Kim, and S. Hong, “A calibration method of a range finder with a six-port network,” IEEE Microw. Wirel. Compon. Lett. 17, 549–551 (2007).
    [CrossRef]
  10. J. C. K. Chow, D. D. Lichti, and W. F. Teskey, “Self-calibration of the Trimble (Mensi) GS 200 terrestrial laser scanner,” in Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII (ISPRS, 2010), pp. 161–166.
  11. D. Martin and G. Gatta, “Calibration of total stations instruments at the ESRF,” in Proceedings of XXIII FIG Congress (2006), (International Federation of Surveyors, 2006), pp. 1–14.
  12. B. Qi, A. Tausz, L. Qian, and H. K. Lo, “High-resolution, large dynamic range fiber length measurement based on a frequency-shifted asymmetric Sagnac interferometer,” Opt. Lett. 30, 3287–3289 (2005).
    [CrossRef]
  13. X. W. Li, L. M. Peng, S. B. Wang, Y. C. Kim, and J. P. Chen, “A novel kind of programmable 3n feed-forward optical fiber true delay line based on SOA,” Opt. Express 15, 16760–16766 (2007).
    [CrossRef]

2011

S. G. Li, X. W. Li, W. Zou, J. G. Shen, Z. H. Hong, and J. P. Chen, “High-resolution measurement of fiber length change with optical low-coherence reflectometer based on a fiber-ring structure,” Appl. Phys. Express 4, 062501 (2011).
[CrossRef]

2010

2007

J. R. Yang, D. W. Kim, and S. Hong, “A calibration method of a range finder with a six-port network,” IEEE Microw. Wirel. Compon. Lett. 17, 549–551 (2007).
[CrossRef]

X. W. Li, L. M. Peng, S. B. Wang, Y. C. Kim, and J. P. Chen, “A novel kind of programmable 3n feed-forward optical fiber true delay line based on SOA,” Opt. Express 15, 16760–16766 (2007).
[CrossRef]

2005

2002

M. Zhong, F. Duan, B. Yang, Y. Sun, and S. Ye, “Research on l0 m range absolute measurement of fiber interference,” Proc. SPIE 4920, 478–481 (2002).
[CrossRef]

1995

D. M. Baney and W. V. Sorin, “Optical low coherence reflectometry with range extension >150  m,” Electron. Lett. 31, 1775–1776 (1995).
[CrossRef]

1993

D. M. Baney and W. V. Sorin, “Extended-range optical low-coherence reflectometry using a recirculating delay technique,” IEEE Photon. Technol. Lett. 5, 1109–1112 (1993).
[CrossRef]

1991

K. Takada, K. Yukimatsu, M. Kobayashi, and J. Noda, “Rayleigh backscatter measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution,” Appl. Phys. Lett. 59, 143–145 (1991).
[CrossRef]

Baney, D. M.

D. M. Baney and W. V. Sorin, “Optical low coherence reflectometry with range extension >150  m,” Electron. Lett. 31, 1775–1776 (1995).
[CrossRef]

D. M. Baney and W. V. Sorin, “Extended-range optical low-coherence reflectometry using a recirculating delay technique,” IEEE Photon. Technol. Lett. 5, 1109–1112 (1993).
[CrossRef]

Chen, J. P.

S. G. Li, X. W. Li, W. Zou, J. G. Shen, Z. H. Hong, and J. P. Chen, “High-resolution measurement of fiber length change with optical low-coherence reflectometer based on a fiber-ring structure,” Appl. Phys. Express 4, 062501 (2011).
[CrossRef]

X. W. Li, L. M. Peng, S. B. Wang, Y. C. Kim, and J. P. Chen, “A novel kind of programmable 3n feed-forward optical fiber true delay line based on SOA,” Opt. Express 15, 16760–16766 (2007).
[CrossRef]

S. G. Li, X. W. Li, J. G. Shen, Z. H. Hong, and J. P. Chen, “A new fiber length measurement method with high precision and large absolute length based on FDL,” in Wireless & Optical Communications Conference (WOCC) (IEEE, 2010), pp. 68–70.
[CrossRef]

Chow, J. C. K.

J. C. K. Chow, D. D. Lichti, and W. F. Teskey, “Self-calibration of the Trimble (Mensi) GS 200 terrestrial laser scanner,” in Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII (ISPRS, 2010), pp. 161–166.

Duan, F.

M. Zhong, F. Duan, B. Yang, Y. Sun, and S. Ye, “Research on l0 m range absolute measurement of fiber interference,” Proc. SPIE 4920, 478–481 (2002).
[CrossRef]

Gatta, G.

D. Martin and G. Gatta, “Calibration of total stations instruments at the ESRF,” in Proceedings of XXIII FIG Congress (2006), (International Federation of Surveyors, 2006), pp. 1–14.

Hong, S.

J. R. Yang, D. W. Kim, and S. Hong, “A calibration method of a range finder with a six-port network,” IEEE Microw. Wirel. Compon. Lett. 17, 549–551 (2007).
[CrossRef]

Hong, Z. H.

S. G. Li, X. W. Li, W. Zou, J. G. Shen, Z. H. Hong, and J. P. Chen, “High-resolution measurement of fiber length change with optical low-coherence reflectometer based on a fiber-ring structure,” Appl. Phys. Express 4, 062501 (2011).
[CrossRef]

S. G. Li, X. W. Li, J. G. Shen, Z. H. Hong, and J. P. Chen, “A new fiber length measurement method with high precision and large absolute length based on FDL,” in Wireless & Optical Communications Conference (WOCC) (IEEE, 2010), pp. 68–70.
[CrossRef]

Kim, D. W.

J. R. Yang, D. W. Kim, and S. Hong, “A calibration method of a range finder with a six-port network,” IEEE Microw. Wirel. Compon. Lett. 17, 549–551 (2007).
[CrossRef]

Kim, Y. C.

Kobayashi, M.

K. Takada, K. Yukimatsu, M. Kobayashi, and J. Noda, “Rayleigh backscatter measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution,” Appl. Phys. Lett. 59, 143–145 (1991).
[CrossRef]

Li, S. G.

S. G. Li, X. W. Li, W. Zou, J. G. Shen, Z. H. Hong, and J. P. Chen, “High-resolution measurement of fiber length change with optical low-coherence reflectometer based on a fiber-ring structure,” Appl. Phys. Express 4, 062501 (2011).
[CrossRef]

S. G. Li, X. W. Li, J. G. Shen, Z. H. Hong, and J. P. Chen, “A new fiber length measurement method with high precision and large absolute length based on FDL,” in Wireless & Optical Communications Conference (WOCC) (IEEE, 2010), pp. 68–70.
[CrossRef]

Li, X. W.

S. G. Li, X. W. Li, W. Zou, J. G. Shen, Z. H. Hong, and J. P. Chen, “High-resolution measurement of fiber length change with optical low-coherence reflectometer based on a fiber-ring structure,” Appl. Phys. Express 4, 062501 (2011).
[CrossRef]

X. W. Li, L. M. Peng, S. B. Wang, Y. C. Kim, and J. P. Chen, “A novel kind of programmable 3n feed-forward optical fiber true delay line based on SOA,” Opt. Express 15, 16760–16766 (2007).
[CrossRef]

S. G. Li, X. W. Li, J. G. Shen, Z. H. Hong, and J. P. Chen, “A new fiber length measurement method with high precision and large absolute length based on FDL,” in Wireless & Optical Communications Conference (WOCC) (IEEE, 2010), pp. 68–70.
[CrossRef]

Lichti, D. D.

J. C. K. Chow, D. D. Lichti, and W. F. Teskey, “Self-calibration of the Trimble (Mensi) GS 200 terrestrial laser scanner,” in Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII (ISPRS, 2010), pp. 161–166.

Lo, H. K.

Martin, D.

D. Martin and G. Gatta, “Calibration of total stations instruments at the ESRF,” in Proceedings of XXIII FIG Congress (2006), (International Federation of Surveyors, 2006), pp. 1–14.

Noda, J.

K. Takada, K. Yukimatsu, M. Kobayashi, and J. Noda, “Rayleigh backscatter measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution,” Appl. Phys. Lett. 59, 143–145 (1991).
[CrossRef]

Peng, L. M.

Qi, B.

Qian, L.

Shen, J. G.

S. G. Li, X. W. Li, W. Zou, J. G. Shen, Z. H. Hong, and J. P. Chen, “High-resolution measurement of fiber length change with optical low-coherence reflectometer based on a fiber-ring structure,” Appl. Phys. Express 4, 062501 (2011).
[CrossRef]

S. G. Li, X. W. Li, J. G. Shen, Z. H. Hong, and J. P. Chen, “A new fiber length measurement method with high precision and large absolute length based on FDL,” in Wireless & Optical Communications Conference (WOCC) (IEEE, 2010), pp. 68–70.
[CrossRef]

Sorin, W. V.

D. M. Baney and W. V. Sorin, “Optical low coherence reflectometry with range extension >150  m,” Electron. Lett. 31, 1775–1776 (1995).
[CrossRef]

D. M. Baney and W. V. Sorin, “Extended-range optical low-coherence reflectometry using a recirculating delay technique,” IEEE Photon. Technol. Lett. 5, 1109–1112 (1993).
[CrossRef]

Sun, Y.

M. Zhong, F. Duan, B. Yang, Y. Sun, and S. Ye, “Research on l0 m range absolute measurement of fiber interference,” Proc. SPIE 4920, 478–481 (2002).
[CrossRef]

Takada, K.

K. Takada, K. Yukimatsu, M. Kobayashi, and J. Noda, “Rayleigh backscatter measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution,” Appl. Phys. Lett. 59, 143–145 (1991).
[CrossRef]

Tausz, A.

Teskey, W. F.

J. C. K. Chow, D. D. Lichti, and W. F. Teskey, “Self-calibration of the Trimble (Mensi) GS 200 terrestrial laser scanner,” in Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII (ISPRS, 2010), pp. 161–166.

Wang, S. B.

Wojtkowski, M.

Yang, B.

M. Zhong, F. Duan, B. Yang, Y. Sun, and S. Ye, “Research on l0 m range absolute measurement of fiber interference,” Proc. SPIE 4920, 478–481 (2002).
[CrossRef]

Yang, J.

Yang, J. R.

J. R. Yang, D. W. Kim, and S. Hong, “A calibration method of a range finder with a six-port network,” IEEE Microw. Wirel. Compon. Lett. 17, 549–551 (2007).
[CrossRef]

Ye, S.

M. Zhong, F. Duan, B. Yang, Y. Sun, and S. Ye, “Research on l0 m range absolute measurement of fiber interference,” Proc. SPIE 4920, 478–481 (2002).
[CrossRef]

Yuan, L.

Yukimatsu, K.

K. Takada, K. Yukimatsu, M. Kobayashi, and J. Noda, “Rayleigh backscatter measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution,” Appl. Phys. Lett. 59, 143–145 (1991).
[CrossRef]

Zhong, M.

M. Zhong, F. Duan, B. Yang, Y. Sun, and S. Ye, “Research on l0 m range absolute measurement of fiber interference,” Proc. SPIE 4920, 478–481 (2002).
[CrossRef]

Zou, W.

S. G. Li, X. W. Li, W. Zou, J. G. Shen, Z. H. Hong, and J. P. Chen, “High-resolution measurement of fiber length change with optical low-coherence reflectometer based on a fiber-ring structure,” Appl. Phys. Express 4, 062501 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Express

S. G. Li, X. W. Li, W. Zou, J. G. Shen, Z. H. Hong, and J. P. Chen, “High-resolution measurement of fiber length change with optical low-coherence reflectometer based on a fiber-ring structure,” Appl. Phys. Express 4, 062501 (2011).
[CrossRef]

Appl. Phys. Lett.

K. Takada, K. Yukimatsu, M. Kobayashi, and J. Noda, “Rayleigh backscatter measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution,” Appl. Phys. Lett. 59, 143–145 (1991).
[CrossRef]

Electron. Lett.

D. M. Baney and W. V. Sorin, “Optical low coherence reflectometry with range extension >150  m,” Electron. Lett. 31, 1775–1776 (1995).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

J. R. Yang, D. W. Kim, and S. Hong, “A calibration method of a range finder with a six-port network,” IEEE Microw. Wirel. Compon. Lett. 17, 549–551 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

D. M. Baney and W. V. Sorin, “Extended-range optical low-coherence reflectometry using a recirculating delay technique,” IEEE Photon. Technol. Lett. 5, 1109–1112 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

M. Zhong, F. Duan, B. Yang, Y. Sun, and S. Ye, “Research on l0 m range absolute measurement of fiber interference,” Proc. SPIE 4920, 478–481 (2002).
[CrossRef]

Other

S. G. Li, X. W. Li, J. G. Shen, Z. H. Hong, and J. P. Chen, “A new fiber length measurement method with high precision and large absolute length based on FDL,” in Wireless & Optical Communications Conference (WOCC) (IEEE, 2010), pp. 68–70.
[CrossRef]

J. C. K. Chow, D. D. Lichti, and W. F. Teskey, “Self-calibration of the Trimble (Mensi) GS 200 terrestrial laser scanner,” in Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII (ISPRS, 2010), pp. 161–166.

D. Martin and G. Gatta, “Calibration of total stations instruments at the ESRF,” in Proceedings of XXIII FIG Congress (2006), (International Federation of Surveyors, 2006), pp. 1–14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup of the proposed structure: Cir, circulator; FUT, fiber under test; FUT0, a fiber segment with length equal to the cascaded “0” arms in all stages; Mirror, movable mirror; A and B, ports of test arm; D, port of the reference arm.

Fig. 2.
Fig. 2.

SNR as a function of the fiber loss in the fiber ring where an attenuator is used to simulate the loss of the proposed structure. The measurement setup is schematically shown in the dashed box.

Fig. 3.
Fig. 3.

Optical loss (left scale) and measurement range (right scale) as a function of the splitting number N (from 2 to 10) for different stage numbers K (from 4 to 9). The optimized condition for each N is marked in filled squares.

Fig. 4.
Fig. 4.

Schematic of preliminarily characterization. Dashed curves correspond to the “OFF” state, and solid curves correspond to the “ON” state. A, B, and D are the ports of the instrument, as indicated in Fig. 1. Circulators (Cir) are used to form two circle rings for the test and reference arms of the instrument for characterization of the fiber lengths of all separate arms stage by stage.

Fig. 5.
Fig. 5.

Examples of the preliminary characterization results of the fourth stage. The vertical scale is 10dB/div. (a) The left peak is the interference signal of the “0” arms of the 1–3 stages and the “0” arm of the fourth stage, and the right peak is the interference signal of the “1” arm of the 1–3 stages and the “1” arm of the fourth stage. (b) The left peak is the interference signal of the “0” arms of 1–3 stages and the “1” arm of the fourth stage, and the right peak is the interference signal of the “2” arms of 1–3 stages and the “2” arm of the fourth stage.

Fig. 6.
Fig. 6.

Spatial resolution as a function of the stage order (Kth) of the delay line. The Kth stage corresponds to the measurement range when the “2” longest arm of all the first–Kth stages are connected in series. Inset, magnified view of the right peak in Fig. 5(a), giving the spatial resolution of 68 μm when the first–third stages are used.

Fig. 7.
Fig. 7.

Measurement results of an unknown FUT. (a) FUT is not connected to FUT0 and the “0” arms of all stages are set at the “ON” states. (b) FUT is in series connected to FUT0 and the “2” arms of all stages at the “ON” states.

Tables (1)

Tables Icon

Table 1. Characterized Fiber Lengths of the Cascaded Delay Line Structure (unit: mm)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Lmeasurement=NK·L0,
Loss(dB)=10×log[N2×(N+1)K1].

Metrics