Abstract

When using stereographic image pairs to create three-dimensional (3D) images, a deep depth of field in the original scene enhances the depth perception in the 3D image. The omnifocus video camera has no depth of field limitations and produces images that are in focus throughout. By installing an attachment on the omnifocus video camera, real-time super deep stereoscopic pairs of video images were obtained. The deeper depth of field creates a larger perspective image shift, which makes greater demands on the binocular fusion of human vision. A means of reducing the perspective shift without harming the depth of field was found.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Izumi, The Basics of 3-Dimensional Images (Ohmsha, 1995).
  2. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
    [CrossRef]
  3. K. Iizuka, “Omnifocus video camera,” Rev. Sci. Instrum. 82, 045105 (2011).
    [CrossRef]
  4. K. Iizuka, “Divergence ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
    [CrossRef]
  5. K. Iizuka, “Welcome to the wonderful world of 3D: anaglyph experiments,” Opt. Photon. News 18(2), 24–29 (2007).
    [CrossRef]
  6. K. Iizuka, “Light touch: experiments with liquid crystal displays,” Opt. Photon. News 13(11), 12–13 (2002).
  7. K. Iizuka, “Cellophane as a half-wave plate and its use for converting a laptop computer screen into a three dimensional display,” Rev. Sci. Instrum. 74, 3636–3639 (2003).
    [CrossRef]
  8. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  9. E. Hecht and A. Zajac, Optics (Addison Wesley, 1974).
  10. K. Iizuka, Elements of Photonics (Wiley, 2002).
  11. K. N. Ogle, “On the limits of stereoscopic vision,” J. Exp. Psychol. 44, 253–259 (1952).
    [CrossRef]
  12. K. Iizuka, Engineering Optics3rd ed. (Springer-Verlag, 2008).
  13. T. Okoshi, Three-Dimensional Imaging Techniques (Asakura Shoten, 1991) (in Japanese).
  14. K. M. Schreiber, J. M. Hillis, H. R. Filippini, C. M. Schor, and M. S. Banks, “The surface of the empirical horopter,” J. Vision 8(3), 7 (2008).
    [CrossRef]
  15. M. Schreiber, D. B. Tweed, and C. M. Schor, “The extended horopter: quantifying retinal correspondence across changes of 3D eye position,” J. Vision 6(1), 6 (2006).
    [CrossRef]

2011

K. Iizuka, “Omnifocus video camera,” Rev. Sci. Instrum. 82, 045105 (2011).
[CrossRef]

2008

K. M. Schreiber, J. M. Hillis, H. R. Filippini, C. M. Schor, and M. S. Banks, “The surface of the empirical horopter,” J. Vision 8(3), 7 (2008).
[CrossRef]

2007

K. Iizuka, “Welcome to the wonderful world of 3D: anaglyph experiments,” Opt. Photon. News 18(2), 24–29 (2007).
[CrossRef]

2006

K. Iizuka, “Divergence ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
[CrossRef]

M. Schreiber, D. B. Tweed, and C. M. Schor, “The extended horopter: quantifying retinal correspondence across changes of 3D eye position,” J. Vision 6(1), 6 (2006).
[CrossRef]

2003

K. Iizuka, “Cellophane as a half-wave plate and its use for converting a laptop computer screen into a three dimensional display,” Rev. Sci. Instrum. 74, 3636–3639 (2003).
[CrossRef]

2002

K. Iizuka, “Light touch: experiments with liquid crystal displays,” Opt. Photon. News 13(11), 12–13 (2002).

1980

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

1952

K. N. Ogle, “On the limits of stereoscopic vision,” J. Exp. Psychol. 44, 253–259 (1952).
[CrossRef]

Banks, M. S.

K. M. Schreiber, J. M. Hillis, H. R. Filippini, C. M. Schor, and M. S. Banks, “The surface of the empirical horopter,” J. Vision 8(3), 7 (2008).
[CrossRef]

Filippini, H. R.

K. M. Schreiber, J. M. Hillis, H. R. Filippini, C. M. Schor, and M. S. Banks, “The surface of the empirical horopter,” J. Vision 8(3), 7 (2008).
[CrossRef]

Hecht, E.

E. Hecht and A. Zajac, Optics (Addison Wesley, 1974).

Hillis, J. M.

K. M. Schreiber, J. M. Hillis, H. R. Filippini, C. M. Schor, and M. S. Banks, “The surface of the empirical horopter,” J. Vision 8(3), 7 (2008).
[CrossRef]

Iizuka, K.

K. Iizuka, “Omnifocus video camera,” Rev. Sci. Instrum. 82, 045105 (2011).
[CrossRef]

K. Iizuka, “Welcome to the wonderful world of 3D: anaglyph experiments,” Opt. Photon. News 18(2), 24–29 (2007).
[CrossRef]

K. Iizuka, “Divergence ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
[CrossRef]

K. Iizuka, “Cellophane as a half-wave plate and its use for converting a laptop computer screen into a three dimensional display,” Rev. Sci. Instrum. 74, 3636–3639 (2003).
[CrossRef]

K. Iizuka, “Light touch: experiments with liquid crystal displays,” Opt. Photon. News 13(11), 12–13 (2002).

K. Iizuka, Elements of Photonics (Wiley, 2002).

K. Iizuka, Engineering Optics3rd ed. (Springer-Verlag, 2008).

Izumi, T.

T. Izumi, The Basics of 3-Dimensional Images (Ohmsha, 1995).

Ogle, K. N.

K. N. Ogle, “On the limits of stereoscopic vision,” J. Exp. Psychol. 44, 253–259 (1952).
[CrossRef]

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

T. Okoshi, Three-Dimensional Imaging Techniques (Asakura Shoten, 1991) (in Japanese).

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Schor, C. M.

K. M. Schreiber, J. M. Hillis, H. R. Filippini, C. M. Schor, and M. S. Banks, “The surface of the empirical horopter,” J. Vision 8(3), 7 (2008).
[CrossRef]

M. Schreiber, D. B. Tweed, and C. M. Schor, “The extended horopter: quantifying retinal correspondence across changes of 3D eye position,” J. Vision 6(1), 6 (2006).
[CrossRef]

Schreiber, K. M.

K. M. Schreiber, J. M. Hillis, H. R. Filippini, C. M. Schor, and M. S. Banks, “The surface of the empirical horopter,” J. Vision 8(3), 7 (2008).
[CrossRef]

Schreiber, M.

M. Schreiber, D. B. Tweed, and C. M. Schor, “The extended horopter: quantifying retinal correspondence across changes of 3D eye position,” J. Vision 6(1), 6 (2006).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Tweed, D. B.

M. Schreiber, D. B. Tweed, and C. M. Schor, “The extended horopter: quantifying retinal correspondence across changes of 3D eye position,” J. Vision 6(1), 6 (2006).
[CrossRef]

Zajac, A.

E. Hecht and A. Zajac, Optics (Addison Wesley, 1974).

J. Exp. Psychol.

K. N. Ogle, “On the limits of stereoscopic vision,” J. Exp. Psychol. 44, 253–259 (1952).
[CrossRef]

J. Vision

K. M. Schreiber, J. M. Hillis, H. R. Filippini, C. M. Schor, and M. S. Banks, “The surface of the empirical horopter,” J. Vision 8(3), 7 (2008).
[CrossRef]

M. Schreiber, D. B. Tweed, and C. M. Schor, “The extended horopter: quantifying retinal correspondence across changes of 3D eye position,” J. Vision 6(1), 6 (2006).
[CrossRef]

Opt. Photon. News

K. Iizuka, “Welcome to the wonderful world of 3D: anaglyph experiments,” Opt. Photon. News 18(2), 24–29 (2007).
[CrossRef]

K. Iizuka, “Light touch: experiments with liquid crystal displays,” Opt. Photon. News 13(11), 12–13 (2002).

Proc. IEEE

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

Rev. Sci. Instrum.

K. Iizuka, “Omnifocus video camera,” Rev. Sci. Instrum. 82, 045105 (2011).
[CrossRef]

K. Iizuka, “Divergence ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
[CrossRef]

K. Iizuka, “Cellophane as a half-wave plate and its use for converting a laptop computer screen into a three dimensional display,” Rev. Sci. Instrum. 74, 3636–3639 (2003).
[CrossRef]

Other

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

E. Hecht and A. Zajac, Optics (Addison Wesley, 1974).

K. Iizuka, Elements of Photonics (Wiley, 2002).

K. Iizuka, Engineering Optics3rd ed. (Springer-Verlag, 2008).

T. Okoshi, Three-Dimensional Imaging Techniques (Asakura Shoten, 1991) (in Japanese).

T. Izumi, The Basics of 3-Dimensional Images (Ohmsha, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Video image with super deep depth of field taken by the omnifocus video camera.

Fig. 2.
Fig. 2.

Block diagram of the omnifocus video camera.

Fig. 3.
Fig. 3.

Arrangement for taking a stereoscopic pair of images.

Fig. 4.
Fig. 4.

3D image observed by means of the polarized light method (at the top) and the geometry to aid in the calculation of the protrusion of the coin (at the bottom).

Fig. 5.
Fig. 5.

Attachment to the 3D omnifocus video camera.

Fig. 6.
Fig. 6.

Objects spread across the laboratory. The farthest object is 6 m from the camera.

Fig. 7.
Fig. 7.

Stereogram taken by the 3D omnifocus video camera.

Fig. 8.
Fig. 8.

Anaglyph made out of the stereogram shown in Fig. 7.

Fig. 9.
Fig. 9.

Stereogram in perpendicular orientation.

Fig. 10.
Fig. 10.

Horopter diagram.

Fig. 11.
Fig. 11.

Principle of operation of the Divcam.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

p=d1+(eb),
(θ1+θ2)=βα.
(θ1+θ2)=βα=2tan1(e2(dp))2tan1(e2d).
(θ1+θ2)=γ.
c0c2=γ2=θ1.
c10c=γ2=θ2.
(θ1+θ2)=2tan1b2d.
(θ1+θ2)<1.3°=0.023rad.
Δ(θ1+θ2)>10.0second=5×105rad.
Δ(θ1+θ2)=d(θ1+θ2)dpΔp.
Δp=5×105e(b+e)2d2.
Δp=0.6mmford=2m,Δp=1.4mmford=3m.
I1=σP0/[4π(rd)]2r2.
I2=σP0/[4π(r+d)]2r2.
r=d(R+1)/(R1).

Metrics