Abstract

The design of an optical current sensor to be used in a pulsed power generator is presented. The current sensor is based on the polarization rotation by the Faraday effect. GEPOPU is a pulsed power generator, 110kA, 120ns double transit time, 1.5Ω coaxial geometry, and current rise time of 50ns. Two different optical geometries surrounding the conductor were tried, using Amici roof prism and pentaprism to go around the current once, as a way to preserve the state of polarization along the optical path by means of complementary reflections within the sensing element. We believe this to be the first time that such large and rapidly varying currents have been measured with this configuration. The values obtained for both geometries agree with the values obtained with a Rogowski coil. The traces obtained are completely noise-free and no significant time lag has been observed between the current determined from the Faraday rotation and the current measured using a Rogowski coil.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bush and D. Jackson, “Numerical investigation of the effects of birefringence and total internal reflection on a Faraday effect current sensors,” Appl. Opt. 31, 5366–5374 (1992).
    [CrossRef]
  2. Y. Ning and Z. Wang, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
    [CrossRef]
  3. W. Caton and J. Katzenstein, “An absolute electric current probe based on the Faraday effect,” J. Res. Natl. Bur. Stand. 89, 265–272 (1984).
  4. T. Yoshino, M. Gojyuki, Y. Takahashi, and T. Shimoyama, “Single glass block Faraday effect current sensor with homogeneous isotropic closed optical circuit,” Appl. Opt. 36, 5566–5573 (1997).
    [CrossRef]
  5. B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418–423 (2000).
    [CrossRef]
  6. J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Model of an openable Faraday-effect hybrid-current optical transducer based on a square-shaped structure with internal mirror,” Appl. Opt. 36, 6242–6245 (1997).
    [CrossRef]
  7. S. P. Bush and D. A. Jackson, “Dual-channel Faraday-effect current sensor capable of simultaneous measurement of two independent currents,” Opt. Lett. 16, 955–957 (1991).
    [CrossRef]
  8. Y. N. Ning, Z. P. Wang, A. W. Palmer, and K. T. V. Grattan, “A Faraday current sensor using a novel multi-optical-loop sensing element,” Meas. Sci. Technol. 6, 1339–1342 (1995).
    [CrossRef]
  9. W. Syed, I. Blesener, D. A. Hammer, and M. Lipson, “Magnetic field measurements in wire-array Z-pinches using magneto-optically active waveguides,” AIP Conf. Proc. 1088, 73–76 (2009).
    [CrossRef]
  10. E. Munin and J. A. Roversi, “Faraday effect and energy gap in optical materials,” J. Phys. D 25, 1635–1639 (1992).
    [CrossRef]
  11. A. Jain and J. Kumar, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714–717 (1999).
    [CrossRef]
  12. E. Hwang and B. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol 17, 2015–2021 (2006).
    [CrossRef]

2009 (1)

W. Syed, I. Blesener, D. A. Hammer, and M. Lipson, “Magnetic field measurements in wire-array Z-pinches using magneto-optically active waveguides,” AIP Conf. Proc. 1088, 73–76 (2009).
[CrossRef]

2006 (1)

E. Hwang and B. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol 17, 2015–2021 (2006).
[CrossRef]

2000 (1)

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418–423 (2000).
[CrossRef]

1999 (1)

A. Jain and J. Kumar, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714–717 (1999).
[CrossRef]

1997 (2)

1995 (2)

Y. N. Ning, Z. P. Wang, A. W. Palmer, and K. T. V. Grattan, “A Faraday current sensor using a novel multi-optical-loop sensing element,” Meas. Sci. Technol. 6, 1339–1342 (1995).
[CrossRef]

Y. Ning and Z. Wang, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

1992 (2)

1991 (1)

1984 (1)

W. Caton and J. Katzenstein, “An absolute electric current probe based on the Faraday effect,” J. Res. Natl. Bur. Stand. 89, 265–272 (1984).

Arce-Diego, J. L.

Blesener, I.

W. Syed, I. Blesener, D. A. Hammer, and M. Lipson, “Magnetic field measurements in wire-array Z-pinches using magneto-optically active waveguides,” AIP Conf. Proc. 1088, 73–76 (2009).
[CrossRef]

Bush, S.

Bush, S. P.

Caton, W.

W. Caton and J. Katzenstein, “An absolute electric current probe based on the Faraday effect,” J. Res. Natl. Bur. Stand. 89, 265–272 (1984).

Chiang, K. S.

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418–423 (2000).
[CrossRef]

Chu, B. C. B.

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418–423 (2000).
[CrossRef]

Gojyuki, M.

Grattan, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, and K. T. V. Grattan, “A Faraday current sensor using a novel multi-optical-loop sensing element,” Meas. Sci. Technol. 6, 1339–1342 (1995).
[CrossRef]

Hammer, D. A.

W. Syed, I. Blesener, D. A. Hammer, and M. Lipson, “Magnetic field measurements in wire-array Z-pinches using magneto-optically active waveguides,” AIP Conf. Proc. 1088, 73–76 (2009).
[CrossRef]

Hwang, E.

E. Hwang and B. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol 17, 2015–2021 (2006).
[CrossRef]

Jackson, D.

Jackson, D. A.

Jain, A.

A. Jain and J. Kumar, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714–717 (1999).
[CrossRef]

Katzenstein, J.

W. Caton and J. Katzenstein, “An absolute electric current probe based on the Faraday effect,” J. Res. Natl. Bur. Stand. 89, 265–272 (1984).

Kim, B.

E. Hwang and B. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol 17, 2015–2021 (2006).
[CrossRef]

Kumar, J.

A. Jain and J. Kumar, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714–717 (1999).
[CrossRef]

Lipson, M.

W. Syed, I. Blesener, D. A. Hammer, and M. Lipson, “Magnetic field measurements in wire-array Z-pinches using magneto-optically active waveguides,” AIP Conf. Proc. 1088, 73–76 (2009).
[CrossRef]

López-Higuera, J. M.

López-Ruisánchez, R.

Munin, E.

E. Munin and J. A. Roversi, “Faraday effect and energy gap in optical materials,” J. Phys. D 25, 1635–1639 (1992).
[CrossRef]

Muriel, M. A.

Ning, Y.

Y. Ning and Z. Wang, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, and K. T. V. Grattan, “A Faraday current sensor using a novel multi-optical-loop sensing element,” Meas. Sci. Technol. 6, 1339–1342 (1995).
[CrossRef]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, and K. T. V. Grattan, “A Faraday current sensor using a novel multi-optical-loop sensing element,” Meas. Sci. Technol. 6, 1339–1342 (1995).
[CrossRef]

Roversi, J. A.

E. Munin and J. A. Roversi, “Faraday effect and energy gap in optical materials,” J. Phys. D 25, 1635–1639 (1992).
[CrossRef]

Shimoyama, T.

Syed, W.

W. Syed, I. Blesener, D. A. Hammer, and M. Lipson, “Magnetic field measurements in wire-array Z-pinches using magneto-optically active waveguides,” AIP Conf. Proc. 1088, 73–76 (2009).
[CrossRef]

Takahashi, Y.

Wang, Z.

Y. Ning and Z. Wang, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Wang, Z. P.

Y. N. Ning, Z. P. Wang, A. W. Palmer, and K. T. V. Grattan, “A Faraday current sensor using a novel multi-optical-loop sensing element,” Meas. Sci. Technol. 6, 1339–1342 (1995).
[CrossRef]

Yi, B.

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418–423 (2000).
[CrossRef]

Yoshino, T.

AIP Conf. Proc. (1)

W. Syed, I. Blesener, D. A. Hammer, and M. Lipson, “Magnetic field measurements in wire-array Z-pinches using magneto-optically active waveguides,” AIP Conf. Proc. 1088, 73–76 (2009).
[CrossRef]

Am. J. Phys. (1)

A. Jain and J. Kumar, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714–717 (1999).
[CrossRef]

Appl. Opt. (3)

IEEE Trans. Instrum. Meas. (1)

B. Yi, B. C. B. Chu, and K. S. Chiang, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418–423 (2000).
[CrossRef]

J. Phys. D (1)

E. Munin and J. A. Roversi, “Faraday effect and energy gap in optical materials,” J. Phys. D 25, 1635–1639 (1992).
[CrossRef]

J. Res. Natl. Bur. Stand. (1)

W. Caton and J. Katzenstein, “An absolute electric current probe based on the Faraday effect,” J. Res. Natl. Bur. Stand. 89, 265–272 (1984).

Meas. Sci. Technol (1)

E. Hwang and B. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol 17, 2015–2021 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, and K. T. V. Grattan, “A Faraday current sensor using a novel multi-optical-loop sensing element,” Meas. Sci. Technol. 6, 1339–1342 (1995).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

Y. Ning and Z. Wang, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup inside the pulsed power generator used to perform the current measurement.

Fig. 2.
Fig. 2.

Experimental setup for current measurement in the pulsed power generator with the sensor built of BK7 hexagonal light pipes and pentaprisms. The same setup was used for the Amici roof prisms sensor.

Fig. 3.
Fig. 3.

The graph shows the current obtained using the optical signals and the rotation in time (top) and the current trace obtained with the Rogowski coil (bottom).

Fig. 4.
Fig. 4.

Graphics of rotation and current versus time (top) for the sensor built of Amici roof prisms and the corresponding Rogowski coil trace, which is particularly noisy (bottom).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΦF=lνB·dl,
ΦF=μ0νNI,

Metrics