Abstract

We used a digital feedback control loop system to produce reproducible fixed volume transmission holograms of high diffraction efficiency. Different strategies were investigated to obtain holograms of good quality and the highest refractive index modulation depth. Using this control system, we were able to record holograms with stationary fringes. Additionally to using the stationary fringe recording, a double recording-fixing schedule resulted in being the most appropriate one to produce reproducible holograms of better characteristics. This strategy is discussed and compared with other already established ones.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
    [CrossRef]
  2. L. Cao and C. Gu, “Matched spectral filter based on reflection holograms for analyte identification,” Appl. Opt. 48, 6973–6979 (2009).
    [CrossRef]
  3. V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
    [CrossRef]
  4. B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
    [CrossRef]
  5. I. Nee, O. Beyer, M. Muller, and K. Buse, “Multichannel wavelength-division multiplexing with thermally fixed Bragg gratings in photorefractive lithium niobate crystals,” J. Opt. Soc. Am. B 20, 1593–1602 (2003).
    [CrossRef]
  6. Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 µm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
    [CrossRef]
  7. D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
    [CrossRef]
  8. E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
    [CrossRef]
  9. M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P. Günter and J.-P. Huignard, eds. (Springer, 2006), pp. 369–396.
  10. J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
    [CrossRef]
  11. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique, ” Opt. Commun. 247, 39–48 (2005).
    [CrossRef]
  12. J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
    [CrossRef]
  13. J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008).
    [CrossRef]
  14. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization(Wiley, 2007).
  15. E. Ambite and L. Arizmendi, “Feedback-controlled recording and fixing of photorefractive holograms in reflection geometry on lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1161–1167 (2011).
    [CrossRef]
  16. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380(2004).
    [CrossRef]
  17. A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
    [CrossRef]
  18. R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A 10, 104006 (2008).
    [CrossRef]
  19. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  20. A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).
  21. H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
    [CrossRef]
  22. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
    [CrossRef]
  23. V. Jerez, I. de Oliveira, and J. Frejlich, “Fixed photorefractive holograms with maximum index-of-refraction modulation in LiNbO3:Fe,” J. Appl. Phys. 106, 063116 (2009).
    [CrossRef]

2011 (1)

2009 (2)

L. Cao and C. Gu, “Matched spectral filter based on reflection holograms for analyte identification,” Appl. Opt. 48, 6973–6979 (2009).
[CrossRef]

V. Jerez, I. de Oliveira, and J. Frejlich, “Fixed photorefractive holograms with maximum index-of-refraction modulation in LiNbO3:Fe,” J. Appl. Phys. 106, 063116 (2009).
[CrossRef]

2008 (2)

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A 10, 104006 (2008).
[CrossRef]

J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008).
[CrossRef]

2007 (2)

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
[CrossRef]

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

2006 (1)

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 µm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

2005 (1)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique, ” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

2004 (1)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380(2004).
[CrossRef]

2003 (1)

2001 (1)

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (1)

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

1995 (1)

1994 (1)

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

1992 (1)

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

1977 (1)

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Ambite, E.

Arizmendi, L.

E. Ambite and L. Arizmendi, “Feedback-controlled recording and fixing of photorefractive holograms in reflection geometry on lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1161–1167 (2011).
[CrossRef]

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique, ” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380(2004).
[CrossRef]

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P. Günter and J.-P. Huignard, eds. (Springer, 2006), pp. 369–396.

Balberg, M.

Barbastathis, G.

Beyer, O.

Brady, D. J.

Breuer, S.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

Brunken, S.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

Buse, K.

Cabrera, J. M.

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P. Günter and J.-P. Huignard, eds. (Springer, 2006), pp. 369–396.

Cao, L.

Carrascosa, M.

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique, ” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380(2004).
[CrossRef]

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P. Günter and J.-P. Huignard, eds. (Springer, 2006), pp. 369–396.

Das, B. K.

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

de Miguel, E. M.

de Oliveira, I.

V. Jerez, I. de Oliveira, and J. Frejlich, “Fixed photorefractive holograms with maximum index-of-refraction modulation in LiNbO3:Fe,” J. Appl. Phys. 106, 063116 (2009).
[CrossRef]

J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008).
[CrossRef]

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique, ” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380(2004).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Frejlich, J.

V. Jerez, I. de Oliveira, and J. Frejlich, “Fixed photorefractive holograms with maximum index-of-refraction modulation in LiNbO3:Fe,” J. Appl. Phys. 106, 063116 (2009).
[CrossRef]

J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008).
[CrossRef]

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A 10, 104006 (2008).
[CrossRef]

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique, ” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380(2004).
[CrossRef]

A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
[CrossRef]

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization(Wiley, 2007).

Freschi, A. A.

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A 10, 104006 (2008).
[CrossRef]

A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
[CrossRef]

Gonser, U.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Gu, C.

Hatano, H.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 µm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Hukriede, J.

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

Jerez, V.

V. Jerez, I. de Oliveira, and J. Frejlich, “Fixed photorefractive holograms with maximum index-of-refraction modulation in LiNbO3:Fe,” J. Appl. Phys. 106, 063116 (2009).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kip, D.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

Kitamura, K.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 µm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Krätzia, E.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Krätzig, E.

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kuz’minov, Y. S.

A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).

Leyva, V.

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

Limeres, J.

Liu, Y.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 µm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Montenegro, R.

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A 10, 104006 (2008).
[CrossRef]

Muller, M.

Müller, R.

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

Nakamura, M.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 µm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Nee, I.

O’Conner, B.

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

Prokhorov, A. M.

A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).

Rakuljic, G. A.

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

Räuber, A.

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Runde, D.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

Sohler, W.

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

Suche, H.

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

Takekawa, S.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 µm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

von Bassewitz, J. P.

Appl. Opt. (3)

Appl. Phys. (1)

H. Kurz, E. Krätzia, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical-, Mössbauer, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Appl. Phys. B (3)

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Appl. Phys. (1)

V. Jerez, I. de Oliveira, and J. Frejlich, “Fixed photorefractive holograms with maximum index-of-refraction modulation in LiNbO3:Fe,” J. Appl. Phys. 106, 063116 (2009).
[CrossRef]

J. Opt. A (1)

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A 10, 104006 (2008).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 µm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Opt. Commun. (2)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique, ” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380(2004).
[CrossRef]

Opt. Lett. (2)

Other (3)

A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P. Günter and J.-P. Huignard, eds. (Springer, 2006), pp. 369–396.

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization(Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for controlled recording in transmission geometry. M-PZT is the mirror attached to a piezoelectric actuator. The sample is located inside the vacuum chamber. The temperature controller has not been drawn.

Fig. 2.
Fig. 2.

Plot of the mean fringe displacement during controlled recording of holograms computed from the control mirror offset signal. The black curve corresponds to the recording using the second harmonic signal I2Ω as the control error signal. The gray curve corresponds to data obtained when using as the error signal a linear combination AIΩBI2Ω of both measured harmonics.

Fig. 3.
Fig. 3.

Angular dependence of the diffraction efficiency of a fringe stabilized hologram recorded up to saturation. The gray continuous curve corresponds to experimental data, and the black dashed curve corresponds to the theoretical dependence. (a) For the ordinary polarized line (the dip close to the peak is a spurious interferential effect) and (b) for extraordinary polarization.

Fig. 4.
Fig. 4.

Angular dependence of the diffraction efficiency for the same hologram of Fig. 2 after the fixing and developing processes. (a) Ordinary polarization and (b) extraordinary polarization.

Fig. 5.
Fig. 5.

Diffraction efficiency angular dependence of a simultaneously recorded/fixed hologram. (a) Ordinary polarization and (b) extraordinary polarization.

Fig. 6.
Fig. 6.

Diffraction efficiency angular dependence obtained after developing a double recorded-fixed hologram. (a) Ordinary polarization and (b) extraordinary polarization. Note that in this case, the refractive index change Δn=2.2·104 resulting for this polarization is very much larger than that needed for a diffraction efficiency η=1.

Fig. 7.
Fig. 7.

Comparison of diffraction efficiency angular dependences after developing, for (gray curve) a double fixed hologram and for (black curve) a simultaneously recorded/fixed hologram of similar refractive index change.

Tables (1)

Tables Icon

Table 1. Comparison of Refractive Index Change Obtained by Using Different Strategies

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

IS=IS0(1η)+IR0η+2(IS0IR0)1/2[η(1η)]1/2cos(φ+ψdsinΩt),
ISΩ=4J1(ψd)(IS0IR0)1/2[η(1η)]1/2sinφ,
IS2Ω=4J2(ψd)(IS0IR0)1/2[η(1η)]1/2cosφ.
η=κ2κ2+ζ2sin2(dκ2+ζ2),

Metrics