Abstract

An optical logic NOT gate (OLNG) is presented based on photonic crystal (PhC) waveguides without nonlinear materials and optical amplifiers. Also, a way of determining the operating parameters is presented. It is demonstrated through finite-difference time-domain simulations that the structure presented can operate as an OLNG. The optimized contrast ratio, defined as the logic-“1” output power divided by the logic-“0” output power, is found to be 297.07 or 24.73 dB. The size of the OLNG can be as small as 7a×7a, where a is the lattice constant of the PhC. Further, the OLNG presented in this paper can operate at a bit rate as high as 2.155Tbit/s, which is much higher than that of electronic or optical logic gates developed until now. Moreover, as it is not based on the nonlinear effect, the OLNG can operate at very low powers and a relatively large operating bandwidth. This is favorable for large-scale optical integration and for developing multiwavelength parallel-processing optical logic systems.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Xu, X. Zhang, D. Liu, and D. Huang, “Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer,” Opt. Express 14, 10708–10714 (2006).
    [CrossRef]
  2. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10  Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42, 303–304 (2006).
    [CrossRef]
  3. D. M. Lai, C. H. Kwok, and K. K. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362–18370 (2008).
    [CrossRef]
  4. S. Ma, Z. Chen, H. Sun, and N. K. Dutta, “High speed all optical logic gates based on quantum dot semiconductor optical amplifiers,” Opt. Express 18, 6417–6422 (2010).
    [CrossRef]
  5. X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10  Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12, 361–366 (2004).
    [CrossRef]
  6. P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A: Pure Appl. Opt. 11, 085203 (2009).
    [CrossRef]
  7. J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48, 6923–6927 (2009).
    [CrossRef]
  8. D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24, 283–294 (2007).
    [CrossRef]
  9. D. V. Novitsky, “Effect of frequency detuning on pulse propagation in one-dimensional photonic crystal with a dense resonant medium: application to optical logic,” J. Opt. Soc. Am. B 26, 1918–1923 (2009).
    [CrossRef]
  10. D. V. Novitsky and S. Y. Mikhnevich, “Logic gate based on a one-dimensional photonic crystal containing quantum dots,” J. Appl. Spectrosc. 77, 232–237 (2010).
    [CrossRef]
  11. I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9, 187–196 (2008).
    [CrossRef]
  12. Q. Liu, Z. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, “All-optical half adder based on cross structures in two-dimensional photonic crystals,” Opt. Express 16, 18992–19000 (2008).
    [CrossRef]
  13. I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640–643 (2000).
  14. Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao, and Z.-Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19, 1945–1953 (2011).
    [CrossRef]
  15. Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15, 9287–9292 (2007).
    [CrossRef]
  16. L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37, 1011–1018 (1998).
    [CrossRef]
  17. Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033–1038 (2005).
    [CrossRef]
  18. M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a PhC cross-waveguide geometry,” Opt. Lett. 28, 2506–2508 (2003).
    [CrossRef]

2011 (1)

2010 (2)

S. Ma, Z. Chen, H. Sun, and N. K. Dutta, “High speed all optical logic gates based on quantum dot semiconductor optical amplifiers,” Opt. Express 18, 6417–6422 (2010).
[CrossRef]

D. V. Novitsky and S. Y. Mikhnevich, “Logic gate based on a one-dimensional photonic crystal containing quantum dots,” J. Appl. Spectrosc. 77, 232–237 (2010).
[CrossRef]

2009 (3)

2008 (3)

2007 (2)

2006 (2)

J. Xu, X. Zhang, D. Liu, and D. Huang, “Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer,” Opt. Express 14, 10708–10714 (2006).
[CrossRef]

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10  Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42, 303–304 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

2000 (1)

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640–643 (2000).

1998 (1)

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37, 1011–1018 (1998).
[CrossRef]

Andalib, P.

P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A: Pure Appl. Opt. 11, 085203 (2009).
[CrossRef]

Bai, J. B.

Chang, S. H.

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37, 1011–1018 (1998).
[CrossRef]

Chen, X. Y.

Chen, Z.

Chen, Z. W.

Dutta, N. K.

Dzedolik, I. V.

I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9, 187–196 (2008).
[CrossRef]

Fan, S.

Granpayeh, N.

P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A: Pure Appl. Opt. 11, 085203 (2009).
[CrossRef]

Guney, D. O.

Gusyatnikov, V. N.

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640–643 (2000).

Han, S. K.

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10  Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42, 303–304 (2006).
[CrossRef]

Huang, D.

Jiang, J. Z.

Joannopoulos, J. D.

Kang, J. M.

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10  Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42, 303–304 (2006).
[CrossRef]

Kashkarov, P. K.

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640–643 (2000).

Kim, J. Y.

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10  Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42, 303–304 (2006).
[CrossRef]

Kim, T. Y.

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10  Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42, 303–304 (2006).
[CrossRef]

Kwok, C. H.

Lai, D. M.

Lapayeva, S. N.

I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9, 187–196 (2008).
[CrossRef]

Li, B. J.

Li, H.

Li, Z. J.

Li, Z.-Y.

Lin, Y. F.

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37, 1011–1018 (1998).
[CrossRef]

Liu, C. P.

Liu, D.

Liu, Q.

Liu, Y.

Ma, S.

Mao, Q.-H.

Meng, Z.-M.

Meyer, D. A.

Mikhnevich, S. Y.

D. V. Novitsky and S. Y. Mikhnevich, “Logic gate based on a one-dimensional photonic crystal containing quantum dots,” J. Appl. Spectrosc. 77, 232–237 (2010).
[CrossRef]

Nefedov, I. S.

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640–643 (2000).

Novitsky, D. V.

D. V. Novitsky and S. Y. Mikhnevich, “Logic gate based on a one-dimensional photonic crystal containing quantum dots,” J. Appl. Spectrosc. 77, 232–237 (2010).
[CrossRef]

D. V. Novitsky, “Effect of frequency detuning on pulse propagation in one-dimensional photonic crystal with a dense resonant medium: application to optical logic,” J. Opt. Soc. Am. B 26, 1918–1923 (2009).
[CrossRef]

Ouyang, Z.

Qiang, Z. X.

Qin, F.

Qiu, Y. S.

Rubass, A. F.

I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9, 187–196 (2008).
[CrossRef]

Soljacic, M.

Sun, H.

Sun, J.

Wang, J. C.

Wang, J. Q.

Wang, L. A.

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37, 1011–1018 (1998).
[CrossRef]

Wang, Y.

Wong, K. K.

Wu, C. J.

Xu, J.

Yanik, M. F.

Zhang, X.

Zhang, Y.

Zhang, Y. L.

Zheltikov, A. M.

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640–643 (2000).

Zhou, F.

Appl. Opt. (1)

Electron. Lett. (1)

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10  Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42, 303–304 (2006).
[CrossRef]

J. Appl. Spectrosc. (1)

D. V. Novitsky and S. Y. Mikhnevich, “Logic gate based on a one-dimensional photonic crystal containing quantum dots,” J. Appl. Spectrosc. 77, 232–237 (2010).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A: Pure Appl. Opt. 11, 085203 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640–643 (2000).

Opt. Eng. (1)

L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37, 1011–1018 (1998).
[CrossRef]

Opt. Express (8)

X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10  Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12, 361–366 (2004).
[CrossRef]

Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033–1038 (2005).
[CrossRef]

J. Xu, X. Zhang, D. Liu, and D. Huang, “Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer,” Opt. Express 14, 10708–10714 (2006).
[CrossRef]

Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15, 9287–9292 (2007).
[CrossRef]

D. M. Lai, C. H. Kwok, and K. K. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362–18370 (2008).
[CrossRef]

Q. Liu, Z. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, “All-optical half adder based on cross structures in two-dimensional photonic crystals,” Opt. Express 16, 18992–19000 (2008).
[CrossRef]

S. Ma, Z. Chen, H. Sun, and N. K. Dutta, “High speed all optical logic gates based on quantum dot semiconductor optical amplifiers,” Opt. Express 18, 6417–6422 (2010).
[CrossRef]

Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao, and Z.-Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19, 1945–1953 (2011).
[CrossRef]

Opt. Lett. (1)

Ukr. J. Phys. Opt. (1)

I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9, 187–196 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Structure of an OLNG.

Fig. 2.
Fig. 2.

Photonic bandgap structure of the PhC in Fig. 1.

Fig. 3.
Fig. 3.

Power transmittance versus the normalized radius of the central rod in the cavity.

Fig. 4.
Fig. 4.

Power transmittance versus the normalized radius rh/a when the four rods around the cavity center are set to have the same radius rh.

Fig. 5.
Fig. 5.

Field distribution pattern when the horizontal input signal is 0 and the reference signal is 11Pa.

Fig. 6.
Fig. 6.

Field distribution pattern when the horizontal input signal is Pa and the reference signal is 11Pa.

Fig. 7.
Fig. 7.

Contrast ratio versus the normalized operating frequency.

Fig. 8.
Fig. 8.

Time evolving curve of the output power.

Tables (1)

Tables Icon

Table 1. Output versus Input

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Y=A¯,
λ1=N11λ1f(rv,rh,rc,εv,εh,εc),
λ2=N21λ2f(rv,rh,rc,εv,εh,εc),
λ1=λ2=λ,εv=εh=εc=ε,N1=1,
N2=3,5,7,.
N2=3.
Δx<λ/10,
Δz<λ/10,
cΔt<1/Δx2+Δz2,
rc=0.02a.
rh=0.424a.

Metrics