Abstract

We have observed terahertz generation via injection current induced by harmonically related two-color beams in an unbiased ZnSe bulk at room temperature using a femtosecond Ti:sapphire oscillator. The terahertz intensity is just several times smaller than that obtained via optical rectification and further enhancements are believed possible. Experimental results demonstrate that the terahertz radiation is mainly attributed to the transition from the split-off band. This conclusion provides a novel approach to effectively generate a broadband and coherently controlled terahertz radiation, which leads to practical applications of terahertz radiation via this mechanism.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kurizki and M. Shapiro, “Phase-coherent control of photocurrent directionality in semiconductors,” Phys. Rev. B 39, 3435–3437 (1989).
    [CrossRef]
  2. R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
    [CrossRef]
  3. M. Sheik-Bahae, “Quantum interference control of current in semiconductors: universal scaling and polarization effects,” Phys. Rev. B 60, R11257–R11260 (1999).
    [CrossRef]
  4. E. Dupont and P. B. Corkum, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
    [CrossRef]
  5. A. Haché, J. E. Sipe, and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
    [CrossRef]
  6. L. Costa, M. Betz, M. Spasenović, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
    [CrossRef]
  7. D. Côté, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
    [CrossRef]
  8. C. Sames, J-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
    [CrossRef]
  9. M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
    [CrossRef]
  10. H. M. van Driel, “Coherence control of currents in semiconductors: a materials perspective,” Chem. Phys. 251, 309–318 (2000).
    [CrossRef]
  11. S. Adachi, “Optical properties of ZnSe,” Phys. Rev. B 43, 9569–9577 (1991).
    [CrossRef]
  12. M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid-State Commun. 114, 515–519 (2000).
  13. U. Rössler, ed., Semiconductors, II–VI and I–VII Compounds: Semimagnetic Compounds, Vol. 41B of Landolt–Börnstein, New Series, 3rd ed. (Springer, 1999).
  14. H. J. Bakker, “Distortion of terahertz pulses in electro-optic sampling,” J. Opt. Soc. Am. B 15, 1795–1801 (1998).
    [CrossRef]

2009

C. Sames, J-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

2008

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

2007

L. Costa, M. Betz, M. Spasenović, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

2000

M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid-State Commun. 114, 515–519 (2000).

H. M. van Driel, “Coherence control of currents in semiconductors: a materials perspective,” Chem. Phys. 251, 309–318 (2000).
[CrossRef]

1999

M. Sheik-Bahae, “Quantum interference control of current in semiconductors: universal scaling and polarization effects,” Phys. Rev. B 60, R11257–R11260 (1999).
[CrossRef]

D. Côté, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

1998

H. J. Bakker, “Distortion of terahertz pulses in electro-optic sampling,” J. Opt. Soc. Am. B 15, 1795–1801 (1998).
[CrossRef]

A. Haché, J. E. Sipe, and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
[CrossRef]

1996

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

1995

E. Dupont and P. B. Corkum, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

1991

S. Adachi, “Optical properties of ZnSe,” Phys. Rev. B 43, 9569–9577 (1991).
[CrossRef]

1989

G. Kurizki and M. Shapiro, “Phase-coherent control of photocurrent directionality in semiconductors,” Phys. Rev. B 39, 3435–3437 (1989).
[CrossRef]

Adachi, S.

S. Adachi, “Optical properties of ZnSe,” Phys. Rev. B 43, 9569–9577 (1991).
[CrossRef]

Atanasov, R.

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

Bakker, H. J.

Betz, M.

C. Sames, J-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

L. Costa, M. Betz, M. Spasenović, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

Brambilla, M.

M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid-State Commun. 114, 515–519 (2000).

Bristow, A. D.

L. Costa, M. Betz, M. Spasenović, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

Bucksbaum, P. H.

D. Côté, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

Corkum, P. B.

E. Dupont and P. B. Corkum, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

Costa, L.

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

L. Costa, M. Betz, M. Spasenović, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

Côté, D.

D. Côté, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

Dabbicco, M.

M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid-State Commun. 114, 515–519 (2000).

DeCamp, M.

D. Côté, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

Dupont, E.

E. Dupont and P. B. Corkum, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

Fraser, J. M.

D. Côté, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

Haché, A.

A. Haché, J. E. Sipe, and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

Hughes, J. L. P.

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

Kurizki, G.

G. Kurizki and M. Shapiro, “Phase-coherent control of photocurrent directionality in semiconductors,” Phys. Rev. B 39, 3435–3437 (1989).
[CrossRef]

Ménard, J-M.

C. Sames, J-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

Sames, C.

C. Sames, J-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

Shapiro, M.

G. Kurizki and M. Shapiro, “Phase-coherent control of photocurrent directionality in semiconductors,” Phys. Rev. B 39, 3435–3437 (1989).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, “Quantum interference control of current in semiconductors: universal scaling and polarization effects,” Phys. Rev. B 60, R11257–R11260 (1999).
[CrossRef]

Sipe, J. E.

A. Haché, J. E. Sipe, and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

Smirl, A. L.

C. Sames, J-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

Spasenovic, M.

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

L. Costa, M. Betz, M. Spasenović, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

van Driel, H. M.

C. Sames, J-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

L. Costa, M. Betz, M. Spasenović, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

H. M. van Driel, “Coherence control of currents in semiconductors: a materials perspective,” Chem. Phys. 251, 309–318 (2000).
[CrossRef]

D. Côté, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

A. Haché, J. E. Sipe, and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

Appl. Phys. Lett.

D. Côté, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999).
[CrossRef]

Chem. Phys.

H. M. van Driel, “Coherence control of currents in semiconductors: a materials perspective,” Chem. Phys. 251, 309–318 (2000).
[CrossRef]

IEEE J. Quantum Electron.

A. Haché, J. E. Sipe, and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Phys.

L. Costa, M. Betz, M. Spasenović, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007).
[CrossRef]

Phys. Rev. B

C. Sames, J-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009).
[CrossRef]

M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008).
[CrossRef]

G. Kurizki and M. Shapiro, “Phase-coherent control of photocurrent directionality in semiconductors,” Phys. Rev. B 39, 3435–3437 (1989).
[CrossRef]

M. Sheik-Bahae, “Quantum interference control of current in semiconductors: universal scaling and polarization effects,” Phys. Rev. B 60, R11257–R11260 (1999).
[CrossRef]

S. Adachi, “Optical properties of ZnSe,” Phys. Rev. B 43, 9569–9577 (1991).
[CrossRef]

Phys. Rev. Lett.

E. Dupont and P. B. Corkum, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995).
[CrossRef]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996).
[CrossRef]

Solid-State Commun.

M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid-State Commun. 114, 515–519 (2000).

Other

U. Rössler, ed., Semiconductors, II–VI and I–VII Compounds: Semimagnetic Compounds, Vol. 41B of Landolt–Börnstein, New Series, 3rd ed. (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for coherently controlled terahertz generation and detection. DS, dichroic splitter; CC, compensation crystal; Pem, pellicle mirror; WP, Wollaston prism. In the reflection scheme, the two-color beams are focused through a hole in the collecting parabolic mirror.

Fig. 2.
Fig. 2.

Time-dependent electro-optic signals for different values of phase delay employing the transmission scheme, compared with that of the second-order rectification. A more detailed dependence on the relative phase is shown in the contour graph in the upper inset and the normalized spectra are shown in the lower inset.

Fig. 3.
Fig. 3.

Time-dependent electro-optic signals for different values of phase delay employing the reflection scheme. The normalized spectrum is shown in the lower inset.

Fig. 4.
Fig. 4.

Peak terahertz field strengths of injection current in ZnSe bulk for various excitation powers of the fundamental and the second harmonic pulses. The solid curves indicate linear and square-root power laws. The error bars indicate the deviation of the terahertz signal strength, which is induced by relative phase control.

Fig. 5.
Fig. 5.

Peak terahertz field strengths as a function of photon energy 2ω, with the solid curve indicating a trend. The field strengths are normalized by Iω(I2ω)1/2 with the variation in pump power. The horizontal and vertical error bars indicate the energy bandwidth of the excitation pulses and the deviation of the terahertz signal strength that is induced by the relative phase control. The inset indicates the schematic diagram of single- and two-photon transitions in ZnSe from the HH band to the conduction as 2ωEg+Δ, compared with that from the split-off band. The transition from the LH band is not plotted for figure clarity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ETHzE2ωEω2sin(2ΦωΦ2ω),

Metrics