Abstract

We experimentally investigate the differences in the evolution of surface-microstructured silicon fabricated by femtosecond laser pulses with different wavelength as a function of irradiated laser energy. The results show that when laser energy absorbed by the silicon material is the same, laser pulses with a shorter wavelength can form the surface-microstructured silicon with less laser energy, while the corresponding spike height is much lower than that of laser pulses with a longer wavelength. This is because the penetration depth of the laser pulses increases exponentially at the increase of the laser wavelength. Additionally, for two laser pulses with the certain wavelength and the certain absorption efficiency of silicon, the proportional relations between their formed spike height and irradiated laser energy should be determined. In particular, the average spike height is 3 times with 8 times corresponding energy for 800 nm laser pulses than that of 400 nm. These results are a benefit for the fast and optimum-morphology preparation of microstructured silicon.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95, 034107 (2009).
    [CrossRef]
  2. L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
    [CrossRef]
  3. H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
    [CrossRef]
  4. P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
    [CrossRef]
  5. Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
    [CrossRef]
  6. P. G. Maloney, P. Smith, V. King, C. Billman, M. Winkler, and E. Mazur, “Emissivity of microstructured silicon,” Appl. Opt. 49, 1065–1068 (2010).
    [CrossRef]
  7. R. A. Myers, R. Farrell, A. M. Karger, J. E. Carey, and E. Mazur, “Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring,” Appl. Opt. 45, 8825–8831 (2006).
    [CrossRef]
  8. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
    [CrossRef]
  9. Y. Peng, Y. Wen, D. S. Zhang, S. D. Luo, L. Chen, and Y. M. Zhu, “Optimal proportional relation between laser power and pulse number for the fabrication of surface-microstructured silicon,” Appl. Opt. 50, 4765–4768 (2011).
    [CrossRef]
  10. V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47, 1846–1850 (2008).
    [CrossRef]
  11. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
    [CrossRef]
  12. J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
    [CrossRef]
  13. J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
    [CrossRef]
  14. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85, 5694–5696 (2004).
    [CrossRef]
  15. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
    [CrossRef]
  16. B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bulletin 31, 626–633 (2006).
    [CrossRef]
  17. W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77 °K and 300 °K,” Phys. Rev. 99, 1151–1155 (1955).
    [CrossRef]

2011

2010

2009

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95, 034107 (2009).
[CrossRef]

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

2008

2006

R. A. Myers, R. Farrell, A. M. Karger, J. E. Carey, and E. Mazur, “Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring,” Appl. Opt. 45, 8825–8831 (2006).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bulletin 31, 626–633 (2006).
[CrossRef]

2005

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

2004

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85, 5694–5696 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

2000

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

1955

W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77 °K and 300 °K,” Phys. Rev. 99, 1151–1155 (1955).
[CrossRef]

Aziz, M. J.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

Beigang, R.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[CrossRef]

Billman, C.

Boukos, N.

Branz, H. M.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Campbell, J. C.

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Carey, J. E.

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

R. A. Myers, R. Farrell, A. M. Karger, J. E. Carey, and E. Mazur, “Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring,” Appl. Opt. 45, 8825–8831 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bulletin 31, 626–633 (2006).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85, 5694–5696 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

Chen, D.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Chen, L.

Chen, X.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Crouch, C. H.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85, 5694–5696 (2004).
[CrossRef]

Dash, W. C.

W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77 °K and 300 °K,” Phys. Rev. 99, 1151–1155 (1955).
[CrossRef]

Ding, X. M.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

Farrell, R.

Fotakis, C.

Fowlkes, J. D.

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

Friend, C. M.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

Ge, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

Genin, F. Y.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

Houa, X. Y.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

Hoyer, P.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[CrossRef]

Huang, Z.

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Jiang, N.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

Karger, A. M.

King, V.

Kley, E.-B.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[CrossRef]

Li, W.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Liu, M.

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Lowndes, D. H.

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

Lu, W.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

Lu, X.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

Luo, S. D.

Ma, L. L.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

Mahmood, A. S.

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95, 034107 (2009).
[CrossRef]

Maloney, P. G.

Mazur, E.

P. G. Maloney, P. Smith, V. King, C. Billman, M. Winkler, and E. Mazur, “Emissivity of microstructured silicon,” Appl. Opt. 49, 1065–1068 (2010).
[CrossRef]

R. A. Myers, R. Farrell, A. M. Karger, J. E. Carey, and E. Mazur, “Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring,” Appl. Opt. 45, 8825–8831 (2006).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bulletin 31, 626–633 (2006).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85, 5694–5696 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

McDonald, J. P.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bulletin 31, 626–633 (2006).
[CrossRef]

Meier, D. L.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Myers, R. A.

Newman, R.

W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77 °K and 300 °K,” Phys. Rev. 99, 1151–1155 (1955).
[CrossRef]

Page, M. R.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Pedraza, A. J.

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

Peng, Y.

Shao, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

Sheehy, M. A.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

Shen, M.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85, 5694–5696 (2004).
[CrossRef]

Shen, Y.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Sivakumar, M.

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95, 034107 (2009).
[CrossRef]

Smith, P.

Stradins, P.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Tan, B.

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95, 034107 (2009).
[CrossRef]

Theuer, M.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[CrossRef]

Tull, B. R.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bulletin 31, 626–633 (2006).
[CrossRef]

Venkatakrishnan, K.

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95, 034107 (2009).
[CrossRef]

Warrender, J. M.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

Wen, Y.

Winkler, M.

Winston, L.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

Yalisove, S. M.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bulletin 31, 626–633 (2006).
[CrossRef]

Yin, G.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Yost, V. E.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Yuan, H.

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Zergioti, I.

Zhang, D. S.

Zhao, L.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Zhou, Y. C.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

Zhu, J.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Zhu, Y. M.

Zorba, V.

Appl. Opt.

Appl. Phys. A

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

Appl. Phys. Lett.

J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres,” Appl. Phys. Lett. 77, 1629–1631 (2000).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85, 5694–5696 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852 (2004).
[CrossRef]

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95, 034107 (2009).
[CrossRef]

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Houa, “Wide-band ‘black silicon’ based on porous silicon,” Appl. Phys. Lett. 88, 171907 (2006).
[CrossRef]

H. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Appl. Surf. Sci.

J. Zhu, Y. Shen, W. Li, X. Chen, G. Yin, D. Chen, and L. Zhao, “Effect of polarization on femtosecond laser pulses structuring silicon surface,” Appl. Surf. Sci. 252, 2752–2756 (2006).
[CrossRef]

Chem. Mater.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

MRS Bulletin

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bulletin 31, 626–633 (2006).
[CrossRef]

Phys. Rev.

W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77 °K and 300 °K,” Phys. Rev. 99, 1151–1155 (1955).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup for the surface-microstructured silicon separately fabricated by the 800 and 400 nm laser beam. When the flip mirror was flipped up, the 800 nm laser beam directly interacted with the silicon, while when the flip mirror was flipped down, the 400 nm laser beam can be obtained and then interact with the silicon.

Fig. 2.
Fig. 2.

Average height of spikes fabricated by the (a) 800 and (b) 400 nm laser pulses as a function of laser energy. Dividing the energy and spike height by (a) 8 and 3, respectively, gives the calculated spike height as a function of the irradiated energy of 400 nm laser pulses [the blue squares in (b)].

Fig. 3.
Fig. 3.

SEMs of surface-microstructured silicon fabricated by (a) 800 and (b) 400 nm laser pulses with the laser energy of (a1) 200, (a2) 1400, (a3) 2000, (b1) 50, (b2) 175, (b3) 325 mJ. The sample is viewed at 45° from the surface normal.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

JV=Jλ×Aλ13πR2d,
Jλ1×Aλ1Jλ2×Aλ2=λ12×d1λ22×d2.
J8008J400d8003d400,

Metrics