Abstract

The mechanism of fiber coil polarization properties’ effect on the performance of a fiber optical gyroscope (FOG) is investigated with analysis of secondary wave trains’ polarization evolution and interference in the fiber coil. Based on the optical model, the simulation demonstrates that the bias error varies nonlinearly with the fiber coil polarization crosstalk, and the experiment verifies the analysis and simulation result, so some measures are promoted to reduce the bias’ dependence on the fiber coil’s polarization properties, which is significant for improving environmental adaptability and long-term stability of the FOG.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Szafraniec, J. Feth, R. Bergh, and J. Blake, “Performance improvements in depolarized fiber gyros,” Proc. SPIE 2510, 37–48 (1995).
    [CrossRef]
  2. B. Szafranied, J. N. Blake, C. H. Lange, and L. K. Strandjord, “Fiber optic gyroscope having modulated suppression of co-propagating and counter-propagating polarization errors,” U.S. patent 6175410 (16January2001).
  3. A. Cordova, R. A. Patterson, E. L. Goldner, and D. Rozelle, “Interferometric fiber optic gyroscope with inertial navigation performance over extended dynamic environments,” Proc. SPIE 2070, 164–180 (1993).
    [CrossRef]
  4. J. Blake, B. Szafraniec, and J. Feth, “Partially polarized fiber-optic gyro,” Opt. Lett. 21, 1192–1194 (1996).
    [CrossRef]
  5. G. B. Malykin and V. I. Pozdnyakova, “Mathematical simulation of random coupling of polarization modes in single-mode optical fibers: XIV. Spectral characteristics of nonreciprocal phase difference of counterpropagating waves at the output of a fiber ring interferometer at a change in the fiber temperature,” Opt. Spectrosc. 102, 785–803 (2007).
    [CrossRef]
  6. H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).
  7. E. C. Kintner, “Polarization control in optical-fiber gyroscopes,” Opt. Lett. 6, 154–156 (1981).
    [CrossRef]
  8. H. C. Lefèvre, J. P. Bettini, S. Vatoux, and N. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” in AGARD/NATO Conference Report on Guided Optical Structures in the Military Environment, CPP-383,9A/13 (AGARD, 1985).
  9. G. Jinzhan, Detection of Weak Signal (Tsinghua, 2002).
  10. X. Xu, C. Zhang, and X. Pan, “Study of reflection error in closed-loop polarization-maintained interferometric fiber optic gyroscope,” Optik 121, 1170–1175 (2010).
    [CrossRef]
  11. A. Yang, D. Wu, and A. Xu, “A simulation model for polarization mode dispersion in long single mode fibers,” Acta Photon. Sin. 32, 1461–1463 (2003).

2010 (1)

X. Xu, C. Zhang, and X. Pan, “Study of reflection error in closed-loop polarization-maintained interferometric fiber optic gyroscope,” Optik 121, 1170–1175 (2010).
[CrossRef]

2007 (1)

G. B. Malykin and V. I. Pozdnyakova, “Mathematical simulation of random coupling of polarization modes in single-mode optical fibers: XIV. Spectral characteristics of nonreciprocal phase difference of counterpropagating waves at the output of a fiber ring interferometer at a change in the fiber temperature,” Opt. Spectrosc. 102, 785–803 (2007).
[CrossRef]

2003 (1)

A. Yang, D. Wu, and A. Xu, “A simulation model for polarization mode dispersion in long single mode fibers,” Acta Photon. Sin. 32, 1461–1463 (2003).

1996 (1)

1995 (1)

B. Szafraniec, J. Feth, R. Bergh, and J. Blake, “Performance improvements in depolarized fiber gyros,” Proc. SPIE 2510, 37–48 (1995).
[CrossRef]

1993 (1)

A. Cordova, R. A. Patterson, E. L. Goldner, and D. Rozelle, “Interferometric fiber optic gyroscope with inertial navigation performance over extended dynamic environments,” Proc. SPIE 2070, 164–180 (1993).
[CrossRef]

1981 (1)

Bergh, R.

B. Szafraniec, J. Feth, R. Bergh, and J. Blake, “Performance improvements in depolarized fiber gyros,” Proc. SPIE 2510, 37–48 (1995).
[CrossRef]

Bettini, J. P.

H. C. Lefèvre, J. P. Bettini, S. Vatoux, and N. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” in AGARD/NATO Conference Report on Guided Optical Structures in the Military Environment, CPP-383,9A/13 (AGARD, 1985).

Blake, J.

J. Blake, B. Szafraniec, and J. Feth, “Partially polarized fiber-optic gyro,” Opt. Lett. 21, 1192–1194 (1996).
[CrossRef]

B. Szafraniec, J. Feth, R. Bergh, and J. Blake, “Performance improvements in depolarized fiber gyros,” Proc. SPIE 2510, 37–48 (1995).
[CrossRef]

Blake, J. N.

B. Szafranied, J. N. Blake, C. H. Lange, and L. K. Strandjord, “Fiber optic gyroscope having modulated suppression of co-propagating and counter-propagating polarization errors,” U.S. patent 6175410 (16January2001).

Cordova, A.

A. Cordova, R. A. Patterson, E. L. Goldner, and D. Rozelle, “Interferometric fiber optic gyroscope with inertial navigation performance over extended dynamic environments,” Proc. SPIE 2070, 164–180 (1993).
[CrossRef]

Feth, J.

J. Blake, B. Szafraniec, and J. Feth, “Partially polarized fiber-optic gyro,” Opt. Lett. 21, 1192–1194 (1996).
[CrossRef]

B. Szafraniec, J. Feth, R. Bergh, and J. Blake, “Performance improvements in depolarized fiber gyros,” Proc. SPIE 2510, 37–48 (1995).
[CrossRef]

Goldner, E. L.

A. Cordova, R. A. Patterson, E. L. Goldner, and D. Rozelle, “Interferometric fiber optic gyroscope with inertial navigation performance over extended dynamic environments,” Proc. SPIE 2070, 164–180 (1993).
[CrossRef]

Jinzhan, G.

G. Jinzhan, Detection of Weak Signal (Tsinghua, 2002).

Kintner, E. C.

Lange, C. H.

B. Szafranied, J. N. Blake, C. H. Lange, and L. K. Strandjord, “Fiber optic gyroscope having modulated suppression of co-propagating and counter-propagating polarization errors,” U.S. patent 6175410 (16January2001).

Lefèvre, H. C.

H. C. Lefèvre, J. P. Bettini, S. Vatoux, and N. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” in AGARD/NATO Conference Report on Guided Optical Structures in the Military Environment, CPP-383,9A/13 (AGARD, 1985).

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).

Malykin, G. B.

G. B. Malykin and V. I. Pozdnyakova, “Mathematical simulation of random coupling of polarization modes in single-mode optical fibers: XIV. Spectral characteristics of nonreciprocal phase difference of counterpropagating waves at the output of a fiber ring interferometer at a change in the fiber temperature,” Opt. Spectrosc. 102, 785–803 (2007).
[CrossRef]

Pan, X.

X. Xu, C. Zhang, and X. Pan, “Study of reflection error in closed-loop polarization-maintained interferometric fiber optic gyroscope,” Optik 121, 1170–1175 (2010).
[CrossRef]

Papuchon, N.

H. C. Lefèvre, J. P. Bettini, S. Vatoux, and N. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” in AGARD/NATO Conference Report on Guided Optical Structures in the Military Environment, CPP-383,9A/13 (AGARD, 1985).

Patterson, R. A.

A. Cordova, R. A. Patterson, E. L. Goldner, and D. Rozelle, “Interferometric fiber optic gyroscope with inertial navigation performance over extended dynamic environments,” Proc. SPIE 2070, 164–180 (1993).
[CrossRef]

Pozdnyakova, V. I.

G. B. Malykin and V. I. Pozdnyakova, “Mathematical simulation of random coupling of polarization modes in single-mode optical fibers: XIV. Spectral characteristics of nonreciprocal phase difference of counterpropagating waves at the output of a fiber ring interferometer at a change in the fiber temperature,” Opt. Spectrosc. 102, 785–803 (2007).
[CrossRef]

Rozelle, D.

A. Cordova, R. A. Patterson, E. L. Goldner, and D. Rozelle, “Interferometric fiber optic gyroscope with inertial navigation performance over extended dynamic environments,” Proc. SPIE 2070, 164–180 (1993).
[CrossRef]

Strandjord, L. K.

B. Szafranied, J. N. Blake, C. H. Lange, and L. K. Strandjord, “Fiber optic gyroscope having modulated suppression of co-propagating and counter-propagating polarization errors,” U.S. patent 6175410 (16January2001).

Szafraniec, B.

J. Blake, B. Szafraniec, and J. Feth, “Partially polarized fiber-optic gyro,” Opt. Lett. 21, 1192–1194 (1996).
[CrossRef]

B. Szafraniec, J. Feth, R. Bergh, and J. Blake, “Performance improvements in depolarized fiber gyros,” Proc. SPIE 2510, 37–48 (1995).
[CrossRef]

Szafranied, B.

B. Szafranied, J. N. Blake, C. H. Lange, and L. K. Strandjord, “Fiber optic gyroscope having modulated suppression of co-propagating and counter-propagating polarization errors,” U.S. patent 6175410 (16January2001).

Vatoux, S.

H. C. Lefèvre, J. P. Bettini, S. Vatoux, and N. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” in AGARD/NATO Conference Report on Guided Optical Structures in the Military Environment, CPP-383,9A/13 (AGARD, 1985).

Wu, D.

A. Yang, D. Wu, and A. Xu, “A simulation model for polarization mode dispersion in long single mode fibers,” Acta Photon. Sin. 32, 1461–1463 (2003).

Xu, A.

A. Yang, D. Wu, and A. Xu, “A simulation model for polarization mode dispersion in long single mode fibers,” Acta Photon. Sin. 32, 1461–1463 (2003).

Xu, X.

X. Xu, C. Zhang, and X. Pan, “Study of reflection error in closed-loop polarization-maintained interferometric fiber optic gyroscope,” Optik 121, 1170–1175 (2010).
[CrossRef]

Yang, A.

A. Yang, D. Wu, and A. Xu, “A simulation model for polarization mode dispersion in long single mode fibers,” Acta Photon. Sin. 32, 1461–1463 (2003).

Zhang, C.

X. Xu, C. Zhang, and X. Pan, “Study of reflection error in closed-loop polarization-maintained interferometric fiber optic gyroscope,” Optik 121, 1170–1175 (2010).
[CrossRef]

Acta Photon. Sin. (1)

A. Yang, D. Wu, and A. Xu, “A simulation model for polarization mode dispersion in long single mode fibers,” Acta Photon. Sin. 32, 1461–1463 (2003).

Opt. Lett. (2)

Opt. Spectrosc. (1)

G. B. Malykin and V. I. Pozdnyakova, “Mathematical simulation of random coupling of polarization modes in single-mode optical fibers: XIV. Spectral characteristics of nonreciprocal phase difference of counterpropagating waves at the output of a fiber ring interferometer at a change in the fiber temperature,” Opt. Spectrosc. 102, 785–803 (2007).
[CrossRef]

Optik (1)

X. Xu, C. Zhang, and X. Pan, “Study of reflection error in closed-loop polarization-maintained interferometric fiber optic gyroscope,” Optik 121, 1170–1175 (2010).
[CrossRef]

Proc. SPIE (2)

A. Cordova, R. A. Patterson, E. L. Goldner, and D. Rozelle, “Interferometric fiber optic gyroscope with inertial navigation performance over extended dynamic environments,” Proc. SPIE 2070, 164–180 (1993).
[CrossRef]

B. Szafraniec, J. Feth, R. Bergh, and J. Blake, “Performance improvements in depolarized fiber gyros,” Proc. SPIE 2510, 37–48 (1995).
[CrossRef]

Other (4)

B. Szafranied, J. N. Blake, C. H. Lange, and L. K. Strandjord, “Fiber optic gyroscope having modulated suppression of co-propagating and counter-propagating polarization errors,” U.S. patent 6175410 (16January2001).

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).

H. C. Lefèvre, J. P. Bettini, S. Vatoux, and N. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” in AGARD/NATO Conference Report on Guided Optical Structures in the Military Environment, CPP-383,9A/13 (AGARD, 1985).

G. Jinzhan, Detection of Weak Signal (Tsinghua, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of fiber optic gyroscope.

Fig. 2.
Fig. 2.

Sensing coil’s input and output wave trains causing first-order error.

Fig. 3.
Fig. 3.

Interference between second-order secondary waves of A and first-order secondary waves of B.

Fig. 4.
Fig. 4.

Sensing coil’s input and output wave trains causing second-order error.

Fig. 5.
Fig. 5.

Interference between first-order secondary waves of A and B.

Fig. 6.
Fig. 6.

Relationship between the bias error and the sensing coil’s polarization crosstalk.

Fig. 7.
Fig. 7.

Relationship between a sensing coil’s polarization crosstalk and temperature.

Fig. 8.
Fig. 8.

Experiment setup.

Fig. 9.
Fig. 9.

Bias’ dependence on crosstalk of the fiber coil.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d3d1=ΔL,
{|OOA1|=d1|OOA2|=iLd+d1+ΔLΔLiLdd1L,whenΔL<iLd0d1LΔLiLd,whenΔLiLd.
Itx_i=j=jminjmax{2IAIBCiCjCk·[γce(Φm+Δϕj)cos(Φm+Δϕj)+γco(Φm+Δϕj)sin(Φm+Δϕj)]},
Ixx_i=j=jminjmax{2IAIBCiCjCk·[γce(ΦmΦS+Δϕj)cos(ΦmΦS+Δϕj)+γco(ΦmΦS+Δϕj)sin(ΦmΦS+Δϕj)]},
I1=i=1N[Ixx_i+Itx_i].
I2=Miγce(Φm1+ϕiΦS)·cos(Φm1+ϕiΦS)+Miγco(Φm1+ϕiΦS)·sin(Φm1+ϕiΦS).

Metrics