Abstract

The authors propose a biosensor architecture based on the selective infiltration of photonic crystal (PhC) structures. The proposed sensor consists of a ring cavity coupled to an optofluidic slow-light waveguide in a PhC platform. A high potential sensitivity of 293  nm/refractive index unit is numerically demonstrated, while maintaining an ultracompact footprint.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [CrossRef]
  2. W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
    [CrossRef]
  3. O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.
  4. M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensors,” Proc. SPIE 7946, 794614 (2011).
    [CrossRef]
  5. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
    [CrossRef]
  6. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
    [CrossRef]
  7. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
    [CrossRef]
  8. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  9. I. M. White and X. D. Fan, “On the performance quantification of resonance refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [CrossRef]
  10. N. Skivsen, A. Tetu, M. Kristensen, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007).
    [CrossRef]
  11. J. Garcia-Ruperez, V. Toccafondo, M. J. Banuls, J. G. Castello, A. Griol, S. Peransi-Llopis, and A. Maquierira, “Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light slow light regime,” Opt. Express 18, 24276–24286 (2010).
    [CrossRef]
  12. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4, 117 (2008).
    [CrossRef]
  13. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
    [CrossRef]
  14. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
    [CrossRef]
  15. V. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photon. Nanostr. Fundam. Appl. 2, 199–206 (2004).
    [CrossRef]
  16. J. P. Hugonin, P. Lalanne, T. P. White, and T. E. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007).
    [CrossRef]
  17. P. Pottier, M. Gnan, and R. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007).
    [CrossRef]
  18. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
    [CrossRef]
  19. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001).
    [CrossRef]
  20. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  21. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
    [CrossRef]
  22. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
    [CrossRef]
  23. G. J. Pedersen, S. S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008).
    [CrossRef]
  24. A. A. Krokhin and P. Halevi, “Influence of weak dissipation on photonic band structure of periodic composites,” Phys. Rev. B 53, 1205–1214 (1996).
    [CrossRef]
  25. K. Nagahara, M. Morifuji, and M. Kondow, “Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal,” Photon. Nanostr. Fundam. Appl. 9, 261–268 (2011).
    [CrossRef]
  26. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
    [CrossRef]
  27. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59–61 (2006).
    [CrossRef]
  28. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008).
    [CrossRef]
  29. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008).
    [CrossRef]
  30. M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32, 3284–3286 (2007).
    [CrossRef]
  31. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
    [CrossRef]
  32. S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
    [CrossRef]
  33. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
    [CrossRef]

2011 (2)

M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensors,” Proc. SPIE 7946, 794614 (2011).
[CrossRef]

K. Nagahara, M. Morifuji, and M. Kondow, “Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal,” Photon. Nanostr. Fundam. Appl. 9, 261–268 (2011).
[CrossRef]

2010 (1)

2009 (4)

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

2008 (10)

X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

G. J. Pedersen, S. S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
[CrossRef]

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4, 117 (2008).
[CrossRef]

I. M. White and X. D. Fan, “On the performance quantification of resonance refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
[CrossRef]

C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008).
[CrossRef]

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008).
[CrossRef]

2007 (6)

2006 (2)

2004 (2)

V. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photon. Nanostr. Fundam. Appl. 2, 199–206 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
[CrossRef]

2003 (1)

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

2001 (2)

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001).
[CrossRef]

1996 (1)

A. A. Krokhin and P. Halevi, “Influence of weak dissipation on photonic band structure of periodic composites,” Phys. Rev. B 53, 1205–1214 (1996).
[CrossRef]

1987 (1)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Abstreiter, G.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

Adibi, A.

M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensors,” Proc. SPIE 7946, 794614 (2011).
[CrossRef]

Asakawa, K.

Askari, M.

M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensors,” Proc. SPIE 7946, 794614 (2011).
[CrossRef]

Baba, T.

Baets, R.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

Banuls, M. J.

Beckx, S.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

Bog, U.

Bogaers, W.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

Borel, P. I.

Brueck, S. R. J.

O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.

Cassagne, D.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[CrossRef]

Castello, J. G.

Chow, E.

Corcoran, B.

d’Yerville, M. L.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[CrossRef]

De La Rue, R.

Di Falco, A.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

Dorfner, D.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

Dumon, P.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

Ebnali-Heidari, M.

Eggleton, B. J.

Emery, T.

Engelen, R. J. P.

Erickson, D.

Fan, S.

O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.

Fan, X.

X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Fan, X. D.

Fauchet, P. M.

Finley, J.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

Forchel, A.

Frandsen, L.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

Frandsen, L. H.

Garcia-Ruperez, J.

Girolami, G.

Gnan, M.

Gomez-Iglesias, A.

Grillet, C.

Griol, A.

Grot, A.

Halevi, P.

A. A. Krokhin and P. Halevi, “Influence of weak dissipation on photonic band structure of periodic composites,” Phys. Rev. B 53, 1205–1214 (1996).
[CrossRef]

Harris, J. S.

O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.

Hauke, N.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

Hugonin, J. P.

Hürlimann, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

Ikeda, N.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Jouanin, C.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[CrossRef]

Kamp, M.

Karnutsch, C.

Kondow, M.

K. Nagahara, M. Morifuji, and M. Kondow, “Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal,” Photon. Nanostr. Fundam. Appl. 9, 261–268 (2011).
[CrossRef]

Korterik, J. P.

Krauss, T. E.

Krauss, T. F.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008).
[CrossRef]

C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
[CrossRef]

Kristensen, M.

Krokhin, A. A.

A. A. Krokhin and P. Halevi, “Influence of weak dissipation on photonic band structure of periodic composites,” Phys. Rev. B 53, 1205–1214 (1996).
[CrossRef]

Kubo, S.

Kuipers, L.

Kumar, V.

V. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photon. Nanostr. Fundam. Appl. 2, 199–206 (2004).
[CrossRef]

Kwon, S. H.

Lalanne, P.

Lee, M. M.

O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.

Lee, M. R.

Lee, M. W.

Letartre, X.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[CrossRef]

Levi, O.

O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.

Li, J.

Luyssaert, B.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

Maquierira, A.

McPhedran, R. C.

Mirkarimi, L. W.

Monat, C.

Mori, D.

Morifuji, M.

K. Nagahara, M. Morifuji, and M. Kondow, “Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal,” Photon. Nanostr. Fundam. Appl. 9, 261–268 (2011).
[CrossRef]

Mortensen, N. A.

G. J. Pedersen, S. S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008).
[CrossRef]

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4, 117 (2008).
[CrossRef]

Nagahara, K.

K. Nagahara, M. Morifuji, and M. Kondow, “Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal,” Photon. Nanostr. Fundam. Appl. 9, 261–268 (2011).
[CrossRef]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001).
[CrossRef]

O’Brien, D.

O’Faolain, L.

Pedersen, G. J.

G. J. Pedersen, S. S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008).
[CrossRef]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4, 117 (2008).
[CrossRef]

Peransi-Llopis, S.

Pottier, P.

Psaltis, D.

Rant, U.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

Rockwood, T.

Rojo-Romeo, P.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[CrossRef]

Scherer, A.

Seassal, C.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[CrossRef]

Selvarajan, A.

V. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photon. Nanostr. Fundam. Appl. 2, 199–206 (2004).
[CrossRef]

Settle, M. D.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001).
[CrossRef]

Shopoua, S. I.

X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Sigalas, M.

Skivsen, N.

Smith, C. L. C.

Srinivas, T.

V. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photon. Nanostr. Fundam. Appl. 2, 199–206 (2004).
[CrossRef]

Sugimoto, Y.

Suh, W.

O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.

Sun, Y. Z.

X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Sunner, T.

Suter, J. D.

X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Taillaert, D.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001).
[CrossRef]

Tetu, A.

Toccafondo, V.

Tomljenovic-Hanic, S.

Van Campenhout, J.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

van Hulst, N. F.

Van Thourhout, D.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

Viktorovitch, P.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[CrossRef]

Watanabe, Y.

White, I. M.

I. M. White and X. D. Fan, “On the performance quantification of resonance refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef]

X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

White, T. P.

Wiaux, V.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

Wouters, J.

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

Wu, D. K. C.

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4, 117 (2008).
[CrossRef]

Xiao, S. S.

G. J. Pedersen, S. S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001).
[CrossRef]

Yegnanarayanan, S.

M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensors,” Proc. SPIE 7946, 794614 (2011).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001).
[CrossRef]

Yuan, X.

Zabel, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

Zhang, J.

O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.

Zhu, H. Y.

X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79, 2312–2314 (2001).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[CrossRef]

Biosens. Bioelectron. (1)

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24, 3688–3692 (2009).
[CrossRef]

Microfluid. Nanofluid. (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4, 117 (2008).
[CrossRef]

Nat. Photon. (2)

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008).
[CrossRef]

Opt. Express (11)

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
[CrossRef]

N. Skivsen, A. Tetu, M. Kristensen, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007).
[CrossRef]

P. Pottier, M. Gnan, and R. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

J. Garcia-Ruperez, V. Toccafondo, M. J. Banuls, J. G. Castello, A. Griol, S. Peransi-Llopis, and A. Maquierira, “Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light slow light regime,” Opt. Express 18, 24276–24286 (2010).
[CrossRef]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
[CrossRef]

I. M. White and X. D. Fan, “On the performance quantification of resonance refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
[CrossRef]

C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008).
[CrossRef]

Opt. Lett. (6)

Photon. Nanostr. Fundam. Appl. (2)

K. Nagahara, M. Morifuji, and M. Kondow, “Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal,” Photon. Nanostr. Fundam. Appl. 9, 261–268 (2011).
[CrossRef]

V. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photon. Nanostr. Fundam. Appl. 2, 199–206 (2004).
[CrossRef]

Phys. Rev. B (2)

G. J. Pedersen, S. S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008).
[CrossRef]

A. A. Krokhin and P. Halevi, “Influence of weak dissipation on photonic band structure of periodic composites,” Phys. Rev. B 53, 1205–1214 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 2539021 (2001).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Proc. SPIE (2)

W. Bogaers, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. Van Campenhout, B. Luyssaert, D. Van Thourhout, and R. Baets, “Large-scale production techniques for photonic nanostructures,” Proc. SPIE 5225, 101–112 (2003).
[CrossRef]

M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensors,” Proc. SPIE 7946, 794614 (2011).
[CrossRef]

Other (1)

O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, “Guided-resonance in photonic crystal slabs for biosensing applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuK1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics