Abstract

Scour is one of the main causes of bridge failures. In order to measure and monitor scour depth variations including deposition (refilling) process, three designs for a scour monitoring system using fiber Bragg grating (FBG) sensors are discussed in the present study. By a comparative study, one of them is recommended in the present study and its instrumentation manufacture process is also introduced in detail. Using this recommended design, the advantages of FBG sensors for monitoring, such as immunity from electromagnetic interference and multiplexing capability, can be fully utilized. Both scour depth variations and entire scour development process including deposition process can be correctly monitored in real-time by continuously identifying the locations of emerging FBG sensors from the riverbed. A reliable sensor protection measure is also designed for FBG sensors in harsh environments, especially in floods. Finally, a verification test using a flume is carried out in the laboratory and three experimental cases are conducted to demonstrate the capability of FBG sensors and applicability of the recommended scour monitoring system. It can be concluded that the recommended scour monitoring system using FBG sensors is capable of measuring the water level, (maximum) scour depth, entire process of scour development, and deposition height due to refilling process. The advantages over other conventional scour monitoring systems are clearly demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Shirhole and R. C. Holt, “Planning for a comprehensive bridge safety program,” Transportation Research Record No. 1290 (Transportation Research Board, 1991).
  2. J. Kattell and M. Eriksson, “Bridge scour evaluation: screening, analysis, and countermeasures,” Publ. Rep. No. 9877 (USDA Forest Service, 1998).
  3. P. F. Lagasse, E. V. Richardson, J. D. Schall, and G. R. Price, “Instrumentation for measuring scour at bridge piers and abutments,” National Cooperative Highway Research Program (NCHRP) Report No. 396 (Transportation Research Board, 1997).
  4. G. W. Parker, L. Bratton, and D. S. Armstrong, “Stream stability and scour assessments at bridges in Massachusetts,” U.S. Geological Survey Open File Report No. 97-588(Massachusetts Highway Dept. Bridge Section, 1997), p. 53.
  5. C. H. Dowding and C. E. Pierce, “Use of time domain reflectometer to detect bridge scour and monitor pier movement,” in Proceedings of Symposium and Workshop on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Application (1994), pp. 579–587.
  6. N. E. Yankielun and L. Zabilansky, “Laboratory investigation of time-domain reflectometry system for monitoring bridge scour,” J. Hydraulic Eng. 125, 1279–1284 (1999).
    [CrossRef]
  7. X. Yu and L. J. Zabilansky, “Time domain reflectometry for automatic bridge scour monitoring,” in Proceedings of Sessions of GeoShanghai (Geotechnical Special Publication(2006), pp. 149, 152–159.
  8. X. Yu and X. Yu, “Algorithm for time domain reflectometry bridge scour measurement system,” in Proceedings of 7th International Symposium on Field Measurements in Geomechanics (FMGM) (2007) .
  9. R. R. Mason and D. M. Shepard, “Field performance of an acoustic scour-depth monitoring system,” in Proceedings Fundamentals and Advancements in Hydraulic Measurements and Experimentation (ASCE, 1994), pp. 366–375.
  10. S. G. Millard, J. H. Bungey, C. Thomas, M. N. Soutsos, M. R. Shaw, and A. Patterson, “Assessing bridge pier scour by radar,” NDT & E Intl. 31 (4), 251–258 (1998).
    [CrossRef]
  11. K. J. Cuevas, M. V. Buchanan, and D. Moss, “Utilizing side scan sonar as an artificial reef management tool,” in OCEANS’02 MTS/IEEE (IEEE, 2002), Vol.  1, pp. 136–140.
  12. F. De Falco and R. Mele, “The monitoring of bridges for scour by sonar and sedimetrics,” NDT & E Intl. 35 (2), 117–123 (2002).
    [CrossRef]
  13. I. Park, J. Lee, and W. Cho, “Assessment of bridge scour and riverbed variation by a ground penetrating radar,” in Proceedings of 10th International Conference on Ground Penetrating Radar, GPR 2004 (2004), pp. 411–414.
  14. B. E. Hunt, “Scour monitoring programs for bridge health,” in Proceedings of 6th International Bridge Engineering Conference: Reliability, Security, and Sustainability in Bridge Engineering (Transportation Research Board, 2005), pp. 531–536.
  15. J.-Y. Lu, J.-H. Hong, C.-C. Su, C.-Y. Wang, and J.-S. Lai, “Field measurements and simulation of bridge scour depth variation during floods,” J. Hydraulic Eng. 134, 810–821 (2008).
    [CrossRef]
  16. S. Baglio, C. Faraci, E. Foti, and R. Musumeci, “Stereo vision for noninvasive dynamic measurements of the scour process around a circular cylinder in an oscillating flow,” in OCEANS 2000, MTS/IEEE Conference and Exhibition (IEEE, 2000), Vol. 2, pp. 987–992 .
  17. J. R. Casas, and P. J. S. Cruz, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
    [CrossRef]
  18. L. Deng and C. S. Cai, “Applications of fiber optic sensors in civil engineering,” Struct. Eng. Mech. 25, 577–596 (2007).
  19. A. D. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensor,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  20. M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fiber,” Electron. Lett. 31, 823–825 (1995).
    [CrossRef]
  21. R. L. Idriss, M. B. Kodindouma, A. D. Kersey, and M. A. Davis, “Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges,” Smart Mater. Struct. 7 (2), 209–216 (1998).
    [CrossRef]
  22. S. V. Miridonov, M. G. Shlyagin, and D. Tentori-Santa-Cruz, “Digital demodulation of a twin-grating fiber optic sensor,” Proc. SPIE 3541, 33–40 (1999).
  23. R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).
  24. Y. B. Lin, J. C. Chen, K. C. Chang, J. C. Chern, and J. S. Lai, “Real-time monitoring of local scour by using fiber Bragg grating sensors,” Smart Mater. Structures 14, 664–670 (2005).
    [CrossRef]

2008 (1)

J.-Y. Lu, J.-H. Hong, C.-C. Su, C.-Y. Wang, and J.-S. Lai, “Field measurements and simulation of bridge scour depth variation during floods,” J. Hydraulic Eng. 134, 810–821 (2008).
[CrossRef]

2007 (1)

L. Deng and C. S. Cai, “Applications of fiber optic sensors in civil engineering,” Struct. Eng. Mech. 25, 577–596 (2007).

2005 (1)

Y. B. Lin, J. C. Chen, K. C. Chang, J. C. Chern, and J. S. Lai, “Real-time monitoring of local scour by using fiber Bragg grating sensors,” Smart Mater. Structures 14, 664–670 (2005).
[CrossRef]

2003 (1)

J. R. Casas, and P. J. S. Cruz, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
[CrossRef]

2002 (1)

F. De Falco and R. Mele, “The monitoring of bridges for scour by sonar and sedimetrics,” NDT & E Intl. 35 (2), 117–123 (2002).
[CrossRef]

2000 (1)

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

1999 (2)

S. V. Miridonov, M. G. Shlyagin, and D. Tentori-Santa-Cruz, “Digital demodulation of a twin-grating fiber optic sensor,” Proc. SPIE 3541, 33–40 (1999).

N. E. Yankielun and L. Zabilansky, “Laboratory investigation of time-domain reflectometry system for monitoring bridge scour,” J. Hydraulic Eng. 125, 1279–1284 (1999).
[CrossRef]

1998 (2)

S. G. Millard, J. H. Bungey, C. Thomas, M. N. Soutsos, M. R. Shaw, and A. Patterson, “Assessing bridge pier scour by radar,” NDT & E Intl. 31 (4), 251–258 (1998).
[CrossRef]

R. L. Idriss, M. B. Kodindouma, A. D. Kersey, and M. A. Davis, “Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges,” Smart Mater. Struct. 7 (2), 209–216 (1998).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensor,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1995 (1)

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Armstrong, D. S.

G. W. Parker, L. Bratton, and D. S. Armstrong, “Stream stability and scour assessments at bridges in Massachusetts,” U.S. Geological Survey Open File Report No. 97-588(Massachusetts Highway Dept. Bridge Section, 1997), p. 53.

Baglio, S.

S. Baglio, C. Faraci, E. Foti, and R. Musumeci, “Stereo vision for noninvasive dynamic measurements of the scour process around a circular cylinder in an oscillating flow,” in OCEANS 2000, MTS/IEEE Conference and Exhibition (IEEE, 2000), Vol. 2, pp. 987–992 .

Bratton, L.

G. W. Parker, L. Bratton, and D. S. Armstrong, “Stream stability and scour assessments at bridges in Massachusetts,” U.S. Geological Survey Open File Report No. 97-588(Massachusetts Highway Dept. Bridge Section, 1997), p. 53.

Buchanan, M. V.

K. J. Cuevas, M. V. Buchanan, and D. Moss, “Utilizing side scan sonar as an artificial reef management tool,” in OCEANS’02 MTS/IEEE (IEEE, 2002), Vol.  1, pp. 136–140.

Bungey, J. H.

S. G. Millard, J. H. Bungey, C. Thomas, M. N. Soutsos, M. R. Shaw, and A. Patterson, “Assessing bridge pier scour by radar,” NDT & E Intl. 31 (4), 251–258 (1998).
[CrossRef]

Cai, C. S.

L. Deng and C. S. Cai, “Applications of fiber optic sensors in civil engineering,” Struct. Eng. Mech. 25, 577–596 (2007).

Casas, J. R.

J. R. Casas, and P. J. S. Cruz, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
[CrossRef]

Chang, K. C.

Y. B. Lin, J. C. Chen, K. C. Chang, J. C. Chern, and J. S. Lai, “Real-time monitoring of local scour by using fiber Bragg grating sensors,” Smart Mater. Structures 14, 664–670 (2005).
[CrossRef]

Chen, J. C.

Y. B. Lin, J. C. Chen, K. C. Chang, J. C. Chern, and J. S. Lai, “Real-time monitoring of local scour by using fiber Bragg grating sensors,” Smart Mater. Structures 14, 664–670 (2005).
[CrossRef]

Chern, J. C.

Y. B. Lin, J. C. Chen, K. C. Chang, J. C. Chern, and J. S. Lai, “Real-time monitoring of local scour by using fiber Bragg grating sensors,” Smart Mater. Structures 14, 664–670 (2005).
[CrossRef]

Cho, W.

I. Park, J. Lee, and W. Cho, “Assessment of bridge scour and riverbed variation by a ground penetrating radar,” in Proceedings of 10th International Conference on Ground Penetrating Radar, GPR 2004 (2004), pp. 411–414.

Cooper,

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Coroy, T.

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Cruz, J. L.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Cruz, P. J. S.

J. R. Casas, and P. J. S. Cruz, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
[CrossRef]

Cuevas, K. J.

K. J. Cuevas, M. V. Buchanan, and D. Moss, “Utilizing side scan sonar as an artificial reef management tool,” in OCEANS’02 MTS/IEEE (IEEE, 2002), Vol.  1, pp. 136–140.

David, J. F.

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Davis, M. A.

R. L. Idriss, M. B. Kodindouma, A. D. Kersey, and M. A. Davis, “Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges,” Smart Mater. Struct. 7 (2), 209–216 (1998).
[CrossRef]

A. D. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensor,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

De Falco, F.

F. De Falco and R. Mele, “The monitoring of bridges for scour by sonar and sedimetrics,” NDT & E Intl. 35 (2), 117–123 (2002).
[CrossRef]

Deng, L.

L. Deng and C. S. Cai, “Applications of fiber optic sensors in civil engineering,” Struct. Eng. Mech. 25, 577–596 (2007).

Dong, L.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Dowding, C. H.

C. H. Dowding and C. E. Pierce, “Use of time domain reflectometer to detect bridge scour and monitor pier movement,” in Proceedings of Symposium and Workshop on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Application (1994), pp. 579–587.

Duck, G.

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Eriksson, M.

J. Kattell and M. Eriksson, “Bridge scour evaluation: screening, analysis, and countermeasures,” Publ. Rep. No. 9877 (USDA Forest Service, 1998).

Faraci, C.

S. Baglio, C. Faraci, E. Foti, and R. Musumeci, “Stereo vision for noninvasive dynamic measurements of the scour process around a circular cylinder in an oscillating flow,” in OCEANS 2000, MTS/IEEE Conference and Exhibition (IEEE, 2000), Vol. 2, pp. 987–992 .

Foti, E.

S. Baglio, C. Faraci, E. Foti, and R. Musumeci, “Stereo vision for noninvasive dynamic measurements of the scour process around a circular cylinder in an oscillating flow,” in OCEANS 2000, MTS/IEEE Conference and Exhibition (IEEE, 2000), Vol. 2, pp. 987–992 .

Hong, J.-H.

J.-Y. Lu, J.-H. Hong, C.-C. Su, C.-Y. Wang, and J.-S. Lai, “Field measurements and simulation of bridge scour depth variation during floods,” J. Hydraulic Eng. 134, 810–821 (2008).
[CrossRef]

Hunt, B. E.

B. E. Hunt, “Scour monitoring programs for bridge health,” in Proceedings of 6th International Bridge Engineering Conference: Reliability, Security, and Sustainability in Bridge Engineering (Transportation Research Board, 2005), pp. 531–536.

Idriss, R. L.

R. L. Idriss, M. B. Kodindouma, A. D. Kersey, and M. A. Davis, “Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges,” Smart Mater. Struct. 7 (2), 209–216 (1998).
[CrossRef]

Jalali, S. J.

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Kattell, J.

J. Kattell and M. Eriksson, “Bridge scour evaluation: screening, analysis, and countermeasures,” Publ. Rep. No. 9877 (USDA Forest Service, 1998).

Kersey, A. D.

R. L. Idriss, M. B. Kodindouma, A. D. Kersey, and M. A. Davis, “Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges,” Smart Mater. Struct. 7 (2), 209–216 (1998).
[CrossRef]

A. D. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensor,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kodindouma, M. B.

R. L. Idriss, M. B. Kodindouma, A. D. Kersey, and M. A. Davis, “Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges,” Smart Mater. Struct. 7 (2), 209–216 (1998).
[CrossRef]

Lagasse, P. F.

P. F. Lagasse, E. V. Richardson, J. D. Schall, and G. R. Price, “Instrumentation for measuring scour at bridge piers and abutments,” National Cooperative Highway Research Program (NCHRP) Report No. 396 (Transportation Research Board, 1997).

Lai, J. S.

Y. B. Lin, J. C. Chen, K. C. Chang, J. C. Chern, and J. S. Lai, “Real-time monitoring of local scour by using fiber Bragg grating sensors,” Smart Mater. Structures 14, 664–670 (2005).
[CrossRef]

Lai, J.-S.

J.-Y. Lu, J.-H. Hong, C.-C. Su, C.-Y. Wang, and J.-S. Lai, “Field measurements and simulation of bridge scour depth variation during floods,” J. Hydraulic Eng. 134, 810–821 (2008).
[CrossRef]

Lee, J.

I. Park, J. Lee, and W. Cho, “Assessment of bridge scour and riverbed variation by a ground penetrating radar,” in Proceedings of 10th International Conference on Ground Penetrating Radar, GPR 2004 (2004), pp. 411–414.

Lin, Y. B.

Y. B. Lin, J. C. Chen, K. C. Chang, J. C. Chern, and J. S. Lai, “Real-time monitoring of local scour by using fiber Bragg grating sensors,” Smart Mater. Structures 14, 664–670 (2005).
[CrossRef]

Lu, J.-Y.

J.-Y. Lu, J.-H. Hong, C.-C. Su, C.-Y. Wang, and J.-S. Lai, “Field measurements and simulation of bridge scour depth variation during floods,” J. Hydraulic Eng. 134, 810–821 (2008).
[CrossRef]

Manuelpillai, G.

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Mason, R. R.

R. R. Mason and D. M. Shepard, “Field performance of an acoustic scour-depth monitoring system,” in Proceedings Fundamentals and Advancements in Hydraulic Measurements and Experimentation (ASCE, 1994), pp. 366–375.

Mele, R.

F. De Falco and R. Mele, “The monitoring of bridges for scour by sonar and sedimetrics,” NDT & E Intl. 35 (2), 117–123 (2002).
[CrossRef]

Millard, S. G.

S. G. Millard, J. H. Bungey, C. Thomas, M. N. Soutsos, M. R. Shaw, and A. Patterson, “Assessing bridge pier scour by radar,” NDT & E Intl. 31 (4), 251–258 (1998).
[CrossRef]

Miridonov, S. V.

S. V. Miridonov, M. G. Shlyagin, and D. Tentori-Santa-Cruz, “Digital demodulation of a twin-grating fiber optic sensor,” Proc. SPIE 3541, 33–40 (1999).

Moss, D.

K. J. Cuevas, M. V. Buchanan, and D. Moss, “Utilizing side scan sonar as an artificial reef management tool,” in OCEANS’02 MTS/IEEE (IEEE, 2002), Vol.  1, pp. 136–140.

Mufti, A. A.

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Mulvihill, P.

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Musumeci, R.

S. Baglio, C. Faraci, E. Foti, and R. Musumeci, “Stereo vision for noninvasive dynamic measurements of the scour process around a circular cylinder in an oscillating flow,” in OCEANS 2000, MTS/IEEE Conference and Exhibition (IEEE, 2000), Vol. 2, pp. 987–992 .

Park, I.

I. Park, J. Lee, and W. Cho, “Assessment of bridge scour and riverbed variation by a ground penetrating radar,” in Proceedings of 10th International Conference on Ground Penetrating Radar, GPR 2004 (2004), pp. 411–414.

Parker, G. W.

G. W. Parker, L. Bratton, and D. S. Armstrong, “Stream stability and scour assessments at bridges in Massachusetts,” U.S. Geological Survey Open File Report No. 97-588(Massachusetts Highway Dept. Bridge Section, 1997), p. 53.

Patrick, H. J.

A. D. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensor,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Patterson, A.

S. G. Millard, J. H. Bungey, C. Thomas, M. N. Soutsos, M. R. Shaw, and A. Patterson, “Assessing bridge pier scour by radar,” NDT & E Intl. 31 (4), 251–258 (1998).
[CrossRef]

Pierce, C. E.

C. H. Dowding and C. E. Pierce, “Use of time domain reflectometer to detect bridge scour and monitor pier movement,” in Proceedings of Symposium and Workshop on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Application (1994), pp. 579–587.

Price, G. R.

P. F. Lagasse, E. V. Richardson, J. D. Schall, and G. R. Price, “Instrumentation for measuring scour at bridge piers and abutments,” National Cooperative Highway Research Program (NCHRP) Report No. 396 (Transportation Research Board, 1997).

Reekie, L.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Richardson, E. V.

P. F. Lagasse, E. V. Richardson, J. D. Schall, and G. R. Price, “Instrumentation for measuring scour at bridge piers and abutments,” National Cooperative Highway Research Program (NCHRP) Report No. 396 (Transportation Research Board, 1997).

Schall, J. D.

P. F. Lagasse, E. V. Richardson, J. D. Schall, and G. R. Price, “Instrumentation for measuring scour at bridge piers and abutments,” National Cooperative Highway Research Program (NCHRP) Report No. 396 (Transportation Research Board, 1997).

Shaw, M. R.

S. G. Millard, J. H. Bungey, C. Thomas, M. N. Soutsos, M. R. Shaw, and A. Patterson, “Assessing bridge pier scour by radar,” NDT & E Intl. 31 (4), 251–258 (1998).
[CrossRef]

Shepard, D. M.

R. R. Mason and D. M. Shepard, “Field performance of an acoustic scour-depth monitoring system,” in Proceedings Fundamentals and Advancements in Hydraulic Measurements and Experimentation (ASCE, 1994), pp. 366–375.

Shlyagin, M. G.

S. V. Miridonov, M. G. Shlyagin, and D. Tentori-Santa-Cruz, “Digital demodulation of a twin-grating fiber optic sensor,” Proc. SPIE 3541, 33–40 (1999).

Smith, P. W. E.

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Soutsos, M. N.

S. G. Millard, J. H. Bungey, C. Thomas, M. N. Soutsos, M. R. Shaw, and A. Patterson, “Assessing bridge pier scour by radar,” NDT & E Intl. 31 (4), 251–258 (1998).
[CrossRef]

Su, C.-C.

J.-Y. Lu, J.-H. Hong, C.-C. Su, C.-Y. Wang, and J.-S. Lai, “Field measurements and simulation of bridge scour depth variation during floods,” J. Hydraulic Eng. 134, 810–821 (2008).
[CrossRef]

Tennyson, R. C.

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Tentori-Santa-Cruz, D.

S. V. Miridonov, M. G. Shlyagin, and D. Tentori-Santa-Cruz, “Digital demodulation of a twin-grating fiber optic sensor,” Proc. SPIE 3541, 33–40 (1999).

Thomas, C.

S. G. Millard, J. H. Bungey, C. Thomas, M. N. Soutsos, M. R. Shaw, and A. Patterson, “Assessing bridge pier scour by radar,” NDT & E Intl. 31 (4), 251–258 (1998).
[CrossRef]

Tucknott, J. A.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Wang, C.-Y.

J.-Y. Lu, J.-H. Hong, C.-C. Su, C.-Y. Wang, and J.-S. Lai, “Field measurements and simulation of bridge scour depth variation during floods,” J. Hydraulic Eng. 134, 810–821 (2008).
[CrossRef]

Xu, M. G.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

Yankielun, N. E.

N. E. Yankielun and L. Zabilansky, “Laboratory investigation of time-domain reflectometry system for monitoring bridge scour,” J. Hydraulic Eng. 125, 1279–1284 (1999).
[CrossRef]

Yu, X.

X. Yu and X. Yu, “Algorithm for time domain reflectometry bridge scour measurement system,” in Proceedings of 7th International Symposium on Field Measurements in Geomechanics (FMGM) (2007) .

X. Yu and X. Yu, “Algorithm for time domain reflectometry bridge scour measurement system,” in Proceedings of 7th International Symposium on Field Measurements in Geomechanics (FMGM) (2007) .

X. Yu and L. J. Zabilansky, “Time domain reflectometry for automatic bridge scour monitoring,” in Proceedings of Sessions of GeoShanghai (Geotechnical Special Publication(2006), pp. 149, 152–159.

Zabilansky, L.

N. E. Yankielun and L. Zabilansky, “Laboratory investigation of time-domain reflectometry system for monitoring bridge scour,” J. Hydraulic Eng. 125, 1279–1284 (1999).
[CrossRef]

Zabilansky, L. J.

X. Yu and L. J. Zabilansky, “Time domain reflectometry for automatic bridge scour monitoring,” in Proceedings of Sessions of GeoShanghai (Geotechnical Special Publication(2006), pp. 149, 152–159.

Can. J. Civil Eng. (1)

R. C. Tennyson, T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, Cooper, J. F. David, P. W. E. Smith, A. A. Mufti, and S. J. Jalali, “Fiber optic sensors in civil engineering structures.” Can. J. Civil Eng. 27, 880–889 (2000).

Electron. Lett. (1)

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fiber,” Electron. Lett. 31, 823–825 (1995).
[CrossRef]

J. Bridge Eng. (1)

J. R. Casas, and P. J. S. Cruz, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
[CrossRef]

J. Hydraulic Eng. (2)

J.-Y. Lu, J.-H. Hong, C.-C. Su, C.-Y. Wang, and J.-S. Lai, “Field measurements and simulation of bridge scour depth variation during floods,” J. Hydraulic Eng. 134, 810–821 (2008).
[CrossRef]

N. E. Yankielun and L. Zabilansky, “Laboratory investigation of time-domain reflectometry system for monitoring bridge scour,” J. Hydraulic Eng. 125, 1279–1284 (1999).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensor,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

NDT & E Intl. (2)

S. G. Millard, J. H. Bungey, C. Thomas, M. N. Soutsos, M. R. Shaw, and A. Patterson, “Assessing bridge pier scour by radar,” NDT & E Intl. 31 (4), 251–258 (1998).
[CrossRef]

F. De Falco and R. Mele, “The monitoring of bridges for scour by sonar and sedimetrics,” NDT & E Intl. 35 (2), 117–123 (2002).
[CrossRef]

Proc. SPIE (1)

S. V. Miridonov, M. G. Shlyagin, and D. Tentori-Santa-Cruz, “Digital demodulation of a twin-grating fiber optic sensor,” Proc. SPIE 3541, 33–40 (1999).

Smart Mater. Struct. (1)

R. L. Idriss, M. B. Kodindouma, A. D. Kersey, and M. A. Davis, “Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges,” Smart Mater. Struct. 7 (2), 209–216 (1998).
[CrossRef]

Smart Mater. Structures (1)

Y. B. Lin, J. C. Chen, K. C. Chang, J. C. Chern, and J. S. Lai, “Real-time monitoring of local scour by using fiber Bragg grating sensors,” Smart Mater. Structures 14, 664–670 (2005).
[CrossRef]

Struct. Eng. Mech. (1)

L. Deng and C. S. Cai, “Applications of fiber optic sensors in civil engineering,” Struct. Eng. Mech. 25, 577–596 (2007).

Other (12)

S. Baglio, C. Faraci, E. Foti, and R. Musumeci, “Stereo vision for noninvasive dynamic measurements of the scour process around a circular cylinder in an oscillating flow,” in OCEANS 2000, MTS/IEEE Conference and Exhibition (IEEE, 2000), Vol. 2, pp. 987–992 .

I. Park, J. Lee, and W. Cho, “Assessment of bridge scour and riverbed variation by a ground penetrating radar,” in Proceedings of 10th International Conference on Ground Penetrating Radar, GPR 2004 (2004), pp. 411–414.

B. E. Hunt, “Scour monitoring programs for bridge health,” in Proceedings of 6th International Bridge Engineering Conference: Reliability, Security, and Sustainability in Bridge Engineering (Transportation Research Board, 2005), pp. 531–536.

K. J. Cuevas, M. V. Buchanan, and D. Moss, “Utilizing side scan sonar as an artificial reef management tool,” in OCEANS’02 MTS/IEEE (IEEE, 2002), Vol.  1, pp. 136–140.

X. Yu and L. J. Zabilansky, “Time domain reflectometry for automatic bridge scour monitoring,” in Proceedings of Sessions of GeoShanghai (Geotechnical Special Publication(2006), pp. 149, 152–159.

X. Yu and X. Yu, “Algorithm for time domain reflectometry bridge scour measurement system,” in Proceedings of 7th International Symposium on Field Measurements in Geomechanics (FMGM) (2007) .

R. R. Mason and D. M. Shepard, “Field performance of an acoustic scour-depth monitoring system,” in Proceedings Fundamentals and Advancements in Hydraulic Measurements and Experimentation (ASCE, 1994), pp. 366–375.

A. M. Shirhole and R. C. Holt, “Planning for a comprehensive bridge safety program,” Transportation Research Record No. 1290 (Transportation Research Board, 1991).

J. Kattell and M. Eriksson, “Bridge scour evaluation: screening, analysis, and countermeasures,” Publ. Rep. No. 9877 (USDA Forest Service, 1998).

P. F. Lagasse, E. V. Richardson, J. D. Schall, and G. R. Price, “Instrumentation for measuring scour at bridge piers and abutments,” National Cooperative Highway Research Program (NCHRP) Report No. 396 (Transportation Research Board, 1997).

G. W. Parker, L. Bratton, and D. S. Armstrong, “Stream stability and scour assessments at bridges in Massachusetts,” U.S. Geological Survey Open File Report No. 97-588(Massachusetts Highway Dept. Bridge Section, 1997), p. 53.

C. H. Dowding and C. E. Pierce, “Use of time domain reflectometer to detect bridge scour and monitor pier movement,” in Proceedings of Symposium and Workshop on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Application (1994), pp. 579–587.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Work principle of FBG sensors.

Fig. 2.
Fig. 2.

Detailed sketch of design 1.

Fig. 3.
Fig. 3.

Monitoring principle of Design 1.

Fig. 4.
Fig. 4.

Detailed sketch of Design 2 segment.

Fig. 5.
Fig. 5.

Monitoring principle of design 2.

Fig. 6.
Fig. 6.

Schematic description for the response of each FBG sensor.

Fig. 7.
Fig. 7.

Detailed sketch of Design 3.

Fig. 8.
Fig. 8.

Design of sensor protection system.

Fig. 9.
Fig. 9.

Monitoring principle of Design 3.

Fig. 10.
Fig. 10.

Instrumentation assembling.

Fig. 11.
Fig. 11.

Installation of FBG sensors and their protection system.

Fig. 12.
Fig. 12.

Water flume and experimental setup.

Fig. 13.
Fig. 13.

Experimental results of case 1.

Fig. 14.
Fig. 14.

Experimental results of case 2.

Fig. 15.
Fig. 15.

Experimental results of case 3.

Tables (1)

Tables Icon

Table 1. Comparison Results

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λB=2neΛ,
ΔλB/λB=KεΔε+KTΔT+KPΔP,
Kε={10.5ne[ρ12ν(ρ11ρ12)]}λB,
KT=(1+ξ)λB,
KP=[(12ν)/E+ne2(12ν)(2ρ12+ρ11)/2/E]λB,
FD=CDAsρV22,

Metrics