Abstract

We have developed a monolithic high power pulsed fiber laser in a master oscillator power amplifier (MOPA) configuration, which is capable of reaching 0.38 mJ pulse energy and 128 kW peak power for 3 ns pulses at 1550nm while maintaining transform-limited linewidth. The fiber laser pulse seed was achieved by directly modulating a CW single-frequency fiber laser using an electro-optic modulator. We used an arbitrary waveform generator to preshape the fiber laser pulses before amplification to avoid pulse steepening and dynamic gain saturation. Single-mode, polarization maintaining highly Er/Yb codoped large core phosphate fibers were used in the power amplifier stages to scale the transform-limited fiber laser pulses, avoiding any nonlinearities.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  2. S. Höfer, A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller, and I. Freitag, “Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power,” Opt. Lett. 26, 1326–1328 (2001).
    [CrossRef]
  3. W. Shi, E. Petersen, D. T. Nguyen, Z. Yao, J. Zong, M. A. Stephen, A. Chavez-Pirson, and N. Peyghambarian, “Kilowatt-level SBS-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm,” Opt. Lett. 35, 2418–2420 (2010).
    [CrossRef]
  4. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14, 10996–11001 (2006).
    [CrossRef]
  5. M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “High peak power single frequency pulses using a short polarization maintaining phosphate glass fiber with a large core,” Appl. Phys. Lett. 92, 181108 (2008).
    [CrossRef]
  6. D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16, 17637–17646 (2008).
    [CrossRef]
  7. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+-doped phosphate fiber laser,” Opt. Lett. 31, 3255–3257 (2006).
    [CrossRef]
  8. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol. 22, 57–62 (2004).
    [CrossRef]
  9. Y. W. Lee, K. E. Urbanek, M. F. Digonnet, R. L. Byer, and S. Jiang, Proc. SPIE 6469, 64690L (2007).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), pp. 329–334.
  11. W. Shi, E. Petersen, M. A. Leigh, J. Zong, Z. Yao, A. Chavez-Pirson, and N. Peyghambarian, “High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band,” Opt. Express 17, 8237–8245 (2009).
    [CrossRef]

2010 (2)

2009 (1)

2008 (2)

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “High peak power single frequency pulses using a short polarization maintaining phosphate glass fiber with a large core,” Appl. Phys. Lett. 92, 181108 (2008).
[CrossRef]

D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16, 17637–17646 (2008).
[CrossRef]

2007 (1)

Y. W. Lee, K. E. Urbanek, M. F. Digonnet, R. L. Byer, and S. Jiang, Proc. SPIE 6469, 64690L (2007).
[CrossRef]

2006 (2)

2004 (1)

2001 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), pp. 329–334.

Byer, R. L.

Chavez-Pirson, A.

Clarkson, W. A.

Digonnet, M. F.

Y. W. Lee, K. E. Urbanek, M. F. Digonnet, R. L. Byer, and S. Jiang, Proc. SPIE 6469, 64690L (2007).
[CrossRef]

Digonnet, M. J. F.

Freitag, I.

Geng, J.

Ghiringhelli, F.

Hickey, L. M. B.

Höfer, S.

Hu, Y.

Jetschke, S.

Jiang, S.

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “High peak power single frequency pulses using a short polarization maintaining phosphate glass fiber with a large core,” Appl. Phys. Lett. 92, 181108 (2008).
[CrossRef]

Y. W. Lee, K. E. Urbanek, M. F. Digonnet, R. L. Byer, and S. Jiang, Proc. SPIE 6469, 64690L (2007).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+-doped phosphate fiber laser,” Opt. Lett. 31, 3255–3257 (2006).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol. 22, 57–62 (2004).
[CrossRef]

Kaneda, Y.

Lee, Y. W.

Leigh, M.

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “High peak power single frequency pulses using a short polarization maintaining phosphate glass fiber with a large core,” Appl. Phys. Lett. 92, 181108 (2008).
[CrossRef]

Leigh, M. A.

Liem, A.

Limpert, J.

Malinowski, A.

Müller, H.-R.

Nguyen, D. T.

Nilsson, J.

Nodop, D.

Petersen, E.

Peyghambarian, N.

Richardson, D. J.

Ruchert, C.

Salin, F.

Schimpf, D. N.

Shi, W.

Sinha, S.

Spiegelberg, C.

Stephen, M. A.

Tünnermann, A.

Unger, S.

Urbanek, K. E.

Y. W. Lee, K. E. Urbanek, M. F. Digonnet, R. L. Byer, and S. Jiang, Proc. SPIE 6469, 64690L (2007).
[CrossRef]

Vu, K. T.

Yao, Z.

Zellmer, H.

Zervas, M. N.

Zong, J.

Appl. Phys. Lett. (1)

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “High peak power single frequency pulses using a short polarization maintaining phosphate glass fiber with a large core,” Appl. Phys. Lett. 92, 181108 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

Y. W. Lee, K. E. Urbanek, M. F. Digonnet, R. L. Byer, and S. Jiang, Proc. SPIE 6469, 64690L (2007).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), pp. 329–334.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Monolithic MOPA-based high power pulsed fiber laser system. AWG: arbitrary waveform generator; EDF: Er-doped fiber amplifiers; EYDF: Er/Yb codoped double cladding fiber amplifiers; BP filter: band-pass filter; EOM: electro-optic modulator. Insets: (a) silica to EYPhF 25/400 fusion splice; (b) and (c) 15 μm and 25 μm cleaved fiber faces, respectively.

Fig. 2.
Fig. 2.

(a) Pulse shape with front edge steepening after the first power amplifier when a square wave seed is used. (b) Pulse shape after second power amplifier using the preshaped pulse seed. The insets are the pulse shapes of the optical pulse seeds after the second EOM and the mode profiles from the respective fiber.

Fig. 3.
Fig. 3.

Pulse energy and peak power after the final EYPF amplifier. Inset is spectrum at high pulse energy.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Pcr21AeffgbLeff,Leff=[1eαL]α,

Metrics