Abstract

A new and simple method for generating binary masks for fabrication of gray scale micro-optical elements is proposed and examined. In this technique the main idea is superimposing two or more gratings with slightly different pitches that depend on the considered gray tone level. This causes generation of a chirped binary mask in which the openings widths are changed from a maximum to minimum through considered steps. Furthermore, to show its capability, it was applied to fabricate some microprisms. In addition, influence of proximity gap, and designation parameters on the surface quality were studied. It is shown that surface deterioration is effectively modified by optimizing the designation parameters. In comparison to other techniques, one of the advantages of this method is to have an assortment of pulse modulated masks that are able to create a variety of gray tone levels. Other advantages are ease in designation and implementation, and the fact that surface roughness could be smoothed effectively by aptly optimized parameters. Theoretical approach, simulation works, and experimental results are presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Reimer, U. Hofmann, M. Jürss, W. Pilz, H. J. Quenzer, and B. Wagner, “Fabrication of microrelief surfaces using a one step lithography process,” Proc. SPIE 3226, 2–10 (1997).
    [CrossRef]
  2. C. Gimkiewicz, D. Hagedom, J. Jahns, E. B. Kley, and F. Thoma, “Fabrication of microprisms for planar optical interconnections by use of analog gray-scale lithography with high-energy-beam-sensitive glass,” Appl. Opt. 38, 2986–2990 (1999).
    [CrossRef]
  3. W. Däschner, M. Larsson, and S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step,” Appl. Opt. 34, 2534–2539 (1995).
    [CrossRef]
  4. Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayer, P. Regnault, and G. Vorin, “One-step 3D shaping using a grey-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
    [CrossRef]
  5. K. Reimer, H. J. Quenzer, M. Jürrs, and B. Wagner, “Micro-optic fabrication using one-level gray tone lithography,” Proc. SPIE 3008, 279 (1997).
    [CrossRef]
  6. M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
    [CrossRef]

2008 (1)

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
[CrossRef]

1999 (1)

1997 (2)

K. Reimer, U. Hofmann, M. Jürss, W. Pilz, H. J. Quenzer, and B. Wagner, “Fabrication of microrelief surfaces using a one step lithography process,” Proc. SPIE 3226, 2–10 (1997).
[CrossRef]

K. Reimer, H. J. Quenzer, M. Jürrs, and B. Wagner, “Micro-optic fabrication using one-level gray tone lithography,” Proc. SPIE 3008, 279 (1997).
[CrossRef]

1995 (1)

1994 (1)

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayer, P. Regnault, and G. Vorin, “One-step 3D shaping using a grey-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Christophersen, M.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
[CrossRef]

Däschner, W.

Gimkiewicz, C.

Hagedom, D.

Hofmann, U.

K. Reimer, U. Hofmann, M. Jürss, W. Pilz, H. J. Quenzer, and B. Wagner, “Fabrication of microrelief surfaces using a one step lithography process,” Proc. SPIE 3226, 2–10 (1997).
[CrossRef]

Jahns, J.

Jürrs, M.

K. Reimer, H. J. Quenzer, M. Jürrs, and B. Wagner, “Micro-optic fabrication using one-level gray tone lithography,” Proc. SPIE 3008, 279 (1997).
[CrossRef]

Jürss, M.

K. Reimer, U. Hofmann, M. Jürss, W. Pilz, H. J. Quenzer, and B. Wagner, “Fabrication of microrelief surfaces using a one step lithography process,” Proc. SPIE 3226, 2–10 (1997).
[CrossRef]

Kley, E. B.

Larsson, M.

Lee, S. H.

Mayer, J. M.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayer, P. Regnault, and G. Vorin, “One-step 3D shaping using a grey-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Oppliger, Y.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayer, P. Regnault, and G. Vorin, “One-step 3D shaping using a grey-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Phlips, B. F.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
[CrossRef]

Pilz, W.

K. Reimer, U. Hofmann, M. Jürss, W. Pilz, H. J. Quenzer, and B. Wagner, “Fabrication of microrelief surfaces using a one step lithography process,” Proc. SPIE 3226, 2–10 (1997).
[CrossRef]

Quenzer, H. J.

K. Reimer, U. Hofmann, M. Jürss, W. Pilz, H. J. Quenzer, and B. Wagner, “Fabrication of microrelief surfaces using a one step lithography process,” Proc. SPIE 3226, 2–10 (1997).
[CrossRef]

K. Reimer, H. J. Quenzer, M. Jürrs, and B. Wagner, “Micro-optic fabrication using one-level gray tone lithography,” Proc. SPIE 3008, 279 (1997).
[CrossRef]

Regnault, P.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayer, P. Regnault, and G. Vorin, “One-step 3D shaping using a grey-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Reimer, K.

K. Reimer, U. Hofmann, M. Jürss, W. Pilz, H. J. Quenzer, and B. Wagner, “Fabrication of microrelief surfaces using a one step lithography process,” Proc. SPIE 3226, 2–10 (1997).
[CrossRef]

K. Reimer, H. J. Quenzer, M. Jürrs, and B. Wagner, “Micro-optic fabrication using one-level gray tone lithography,” Proc. SPIE 3008, 279 (1997).
[CrossRef]

Sixt, P.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayer, P. Regnault, and G. Vorin, “One-step 3D shaping using a grey-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Stauffer, J. M.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayer, P. Regnault, and G. Vorin, “One-step 3D shaping using a grey-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Thoma, F.

Vorin, G.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayer, P. Regnault, and G. Vorin, “One-step 3D shaping using a grey-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Wagner, B.

K. Reimer, U. Hofmann, M. Jürss, W. Pilz, H. J. Quenzer, and B. Wagner, “Fabrication of microrelief surfaces using a one step lithography process,” Proc. SPIE 3226, 2–10 (1997).
[CrossRef]

K. Reimer, H. J. Quenzer, M. Jürrs, and B. Wagner, “Micro-optic fabrication using one-level gray tone lithography,” Proc. SPIE 3008, 279 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92, 194102 (2008).
[CrossRef]

Microelectron. Eng. (1)

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayer, P. Regnault, and G. Vorin, “One-step 3D shaping using a grey-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Proc. SPIE (2)

K. Reimer, H. J. Quenzer, M. Jürrs, and B. Wagner, “Micro-optic fabrication using one-level gray tone lithography,” Proc. SPIE 3008, 279 (1997).
[CrossRef]

K. Reimer, U. Hofmann, M. Jürss, W. Pilz, H. J. Quenzer, and B. Wagner, “Fabrication of microrelief surfaces using a one step lithography process,” Proc. SPIE 3226, 2–10 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Comparing between two gratings models (two upper figures) and N gratings structure (two lower ones).

Fig. 2.
Fig. 2.

Schematic of the optical setup used to test the structure.

Fig. 3.
Fig. 3.

Intensity distribution of an incident plane wave in a small distance out of the second focal plane.

Fig. 4.
Fig. 4.

Effect of proximity gap on the surface profile of the fabricated microprism. (1) Semigray level mask (a) 25μm, and (b) 300μm. (2) Full gray level (c) 25μm, and (d) 300μm.

Fig. 5.
Fig. 5.

Surface profile of (a) α=0.5, P=60μm; (b) α=0.5, P=35μm; (c) α=1, P=110μm; and (d) α=1, P=60μm.

Fig. 6.
Fig. 6.

Surface profile of (a) α=0.2, P=60μm; (b) α=0.5, P=60μm; (c) α=0.7, P=60μm; and (d) α=1, P=60μm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f(x)=n=0Nrect(xnPW0),
rect(x/a)={1if|x|a/20else.
f(x)=W0P+m=01mπsin(mπW0P)cos(2mπxP).
g(x)=n=1N[WnPn+m=01mπsin(mπWnPn)cos(2mπxPn)].
Wn=W1+αnP
f(x)=n=0Nrect(xnPWn).
f(x)=n=0NWnP+n=0Nm=01mπ{sin[2mπP(x+Wn/2)]sin(2mπP(xWn/2))}fornP<x<(n+1)P.

Metrics