Abstract

In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Chrisp, “Aberrations of holographic toroidal grating systems,” Appl. Opt. 22, 1508–1518 (1983).
    [CrossRef]
  2. W. C. Cash, “Aspheric concave grating spectrographs,” Appl. Opt. 23, 4518–4522 (1984).
    [CrossRef]
  3. J. Simon, M. Gil, and A. Fantino, “Czerny-Turner monochromator: astigmatism in the classical and in the crossed beam dispositions,” Appl. Opt. 25, 3715–3720 (1986).
    [CrossRef]
  4. W. R. McKinney and C. Palmer, “Numerical design method for aberration-reduced concave grating spectrometers,” Appl. Opt. 26, 3108–3118 (1987).
    [CrossRef]
  5. R. Grange “Aberration-reduced holographic spherical gratings for Rowland circle spectrographs,” Appl. Opt. 31, 3744–3749 (1992).
    [CrossRef]
  6. R. T. Marsha and D. G. Torr, “Compact imaging spectrograph for broadband spectral simultaneity,” Appl. Opt. 34, 7888–7898 (1995).
    [CrossRef]
  7. D. R. Austin, T. Witting, and I. A. Walmsley, “Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors,” Appl. Opt. 48, 3846–3853 (2009).
    [CrossRef]
  8. Hettrick Scientific, “Hardware products,” http://www.hettrickscientific.com/products .
  9. SPECTRO, “SPECTRO ARCOS,” http://www.spectro.com/pages/e/p010304.htm .
  10. R. Tousey, J. D. Purcell, and D. L. Garrett, “An Echelle spectrograph for middle ultraviolet solar spectroscopy from rockets,” Appl. Opt. 6, 365–372 (1967).
    [CrossRef]
  11. Q. Zhou and L. F. Li, “Design method of convex master gratings for replicating flat field concave gratings,” Spectrosc. Spectr. Anal. 29, 2281–2285 (2009).
  12. H. Noda, T. Namioka, and M. J. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974).
    [CrossRef]
  13. T. Namioka, M. J. Seya, and H. Noda, “Design and performance of holographic concave gratings,” J. Appl. Phys. 15, 1181–1197 (1976).
    [CrossRef]
  14. L. Yu, S. Wang, Y. Qu, and G. Lin, “Broadband FUV imaging spectrometer: advanced design with a single toroidal uniform-line-space grating,” Appl. Opt. 50, 4468–4477 (2011).
    [CrossRef]
  15. P. Kong, Y. Ba, and W. H. Li, “Optimization of double-grating flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 31, 0205001 (2011).
    [CrossRef]
  16. H. Lin and L. F. Li, “Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photoresist mask,” Appl. Opt. 47, 6212–6218 (2008).
    [CrossRef]
  17. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning Reading (Addison-Wesley, 1989).
  18. Hamamatsu, “Image measurement cameras,” http://jp.hamamatsu.com/en/product_info .

2011 (2)

L. Yu, S. Wang, Y. Qu, and G. Lin, “Broadband FUV imaging spectrometer: advanced design with a single toroidal uniform-line-space grating,” Appl. Opt. 50, 4468–4477 (2011).
[CrossRef]

P. Kong, Y. Ba, and W. H. Li, “Optimization of double-grating flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 31, 0205001 (2011).
[CrossRef]

2009 (2)

Q. Zhou and L. F. Li, “Design method of convex master gratings for replicating flat field concave gratings,” Spectrosc. Spectr. Anal. 29, 2281–2285 (2009).

D. R. Austin, T. Witting, and I. A. Walmsley, “Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors,” Appl. Opt. 48, 3846–3853 (2009).
[CrossRef]

2008 (1)

1995 (1)

1992 (1)

1987 (1)

1986 (1)

1984 (1)

1983 (1)

1976 (1)

T. Namioka, M. J. Seya, and H. Noda, “Design and performance of holographic concave gratings,” J. Appl. Phys. 15, 1181–1197 (1976).
[CrossRef]

1974 (1)

1967 (1)

Austin, D. R.

Ba, Y.

P. Kong, Y. Ba, and W. H. Li, “Optimization of double-grating flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 31, 0205001 (2011).
[CrossRef]

Cash, W. C.

Chrisp, M. P.

Fantino, A.

Garrett, D. L.

Gil, M.

Goldberg, D. E.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning Reading (Addison-Wesley, 1989).

Grange, R.

Kong, P.

P. Kong, Y. Ba, and W. H. Li, “Optimization of double-grating flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 31, 0205001 (2011).
[CrossRef]

Li, L. F.

Q. Zhou and L. F. Li, “Design method of convex master gratings for replicating flat field concave gratings,” Spectrosc. Spectr. Anal. 29, 2281–2285 (2009).

H. Lin and L. F. Li, “Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photoresist mask,” Appl. Opt. 47, 6212–6218 (2008).
[CrossRef]

Li, W. H.

P. Kong, Y. Ba, and W. H. Li, “Optimization of double-grating flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 31, 0205001 (2011).
[CrossRef]

Lin, G.

Lin, H.

Marsha, R. T.

McKinney, W. R.

Namioka, T.

T. Namioka, M. J. Seya, and H. Noda, “Design and performance of holographic concave gratings,” J. Appl. Phys. 15, 1181–1197 (1976).
[CrossRef]

H. Noda, T. Namioka, and M. J. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974).
[CrossRef]

Noda, H.

T. Namioka, M. J. Seya, and H. Noda, “Design and performance of holographic concave gratings,” J. Appl. Phys. 15, 1181–1197 (1976).
[CrossRef]

H. Noda, T. Namioka, and M. J. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974).
[CrossRef]

Palmer, C.

Purcell, J. D.

Qu, Y.

Seya, M. J.

T. Namioka, M. J. Seya, and H. Noda, “Design and performance of holographic concave gratings,” J. Appl. Phys. 15, 1181–1197 (1976).
[CrossRef]

H. Noda, T. Namioka, and M. J. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974).
[CrossRef]

Simon, J.

Torr, D. G.

Tousey, R.

Walmsley, I. A.

Wang, S.

Witting, T.

Yu, L.

Zhou, Q.

Q. Zhou and L. F. Li, “Design method of convex master gratings for replicating flat field concave gratings,” Spectrosc. Spectr. Anal. 29, 2281–2285 (2009).

Acta Opt. Sin. (1)

P. Kong, Y. Ba, and W. H. Li, “Optimization of double-grating flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 31, 0205001 (2011).
[CrossRef]

Appl. Opt. (10)

H. Lin and L. F. Li, “Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photoresist mask,” Appl. Opt. 47, 6212–6218 (2008).
[CrossRef]

R. Tousey, J. D. Purcell, and D. L. Garrett, “An Echelle spectrograph for middle ultraviolet solar spectroscopy from rockets,” Appl. Opt. 6, 365–372 (1967).
[CrossRef]

M. P. Chrisp, “Aberrations of holographic toroidal grating systems,” Appl. Opt. 22, 1508–1518 (1983).
[CrossRef]

W. C. Cash, “Aspheric concave grating spectrographs,” Appl. Opt. 23, 4518–4522 (1984).
[CrossRef]

J. Simon, M. Gil, and A. Fantino, “Czerny-Turner monochromator: astigmatism in the classical and in the crossed beam dispositions,” Appl. Opt. 25, 3715–3720 (1986).
[CrossRef]

W. R. McKinney and C. Palmer, “Numerical design method for aberration-reduced concave grating spectrometers,” Appl. Opt. 26, 3108–3118 (1987).
[CrossRef]

R. Grange “Aberration-reduced holographic spherical gratings for Rowland circle spectrographs,” Appl. Opt. 31, 3744–3749 (1992).
[CrossRef]

R. T. Marsha and D. G. Torr, “Compact imaging spectrograph for broadband spectral simultaneity,” Appl. Opt. 34, 7888–7898 (1995).
[CrossRef]

D. R. Austin, T. Witting, and I. A. Walmsley, “Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors,” Appl. Opt. 48, 3846–3853 (2009).
[CrossRef]

L. Yu, S. Wang, Y. Qu, and G. Lin, “Broadband FUV imaging spectrometer: advanced design with a single toroidal uniform-line-space grating,” Appl. Opt. 50, 4468–4477 (2011).
[CrossRef]

J. Appl. Phys. (1)

T. Namioka, M. J. Seya, and H. Noda, “Design and performance of holographic concave gratings,” J. Appl. Phys. 15, 1181–1197 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

Spectrosc. Spectr. Anal. (1)

Q. Zhou and L. F. Li, “Design method of convex master gratings for replicating flat field concave gratings,” Spectrosc. Spectr. Anal. 29, 2281–2285 (2009).

Other (4)

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning Reading (Addison-Wesley, 1989).

Hamamatsu, “Image measurement cameras,” http://jp.hamamatsu.com/en/product_info .

Hettrick Scientific, “Hardware products,” http://www.hettrickscientific.com/products .

SPECTRO, “SPECTRO ARCOS,” http://www.spectro.com/pages/e/p010304.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the flat field concave holographic grating.

Fig. 2.
Fig. 2.

Diagram of the Cartesian coordinate system of the grating in the xy plane.

Fig. 3.
Fig. 3.

Layout of the optical configuration based on the flat field concave holographic grating.

Fig. 4.
Fig. 4.

Single wavelength spot radius versus wavelength: (a) 180–360 nm, (b) 360–720 nm.

Fig. 5.
Fig. 5.

Spectrum of line pairs imaged on line array CCD in 180–360 nm.

Fig. 6.
Fig. 6.

Spectrum of line pairs imaged on line array CCD in 360–720 nm.

Tables (6)

Tables Icon

Table 1. Design Parameters of the Spectrometer

Tables Icon

Table 2. Practical Parameters of the Spectrometer

Tables Icon

Table 3. Initial Population Range

Tables Icon

Table 4. Constructing Parameters of the Holographic Concave Grating

Tables Icon

Table 5. Mounting Parameters of the Holographic Concave Grating

Tables Icon

Table 6. Physics Parameters of the Holographic Concave Grating

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F=F000+wF100+lF011+12w2F200+12l2F020+12w3F300+12wl2F120+.
Fijk=Mijk+mλλ0Hijk.
Fijk=Mijk+2λlowλ0Hijk=Mijk+λhighλ0Hijk(2λlow=λhigh).
x=i=0j=0aijyizj(a00=a10=0,j=even).
x=a20y2+a02z2(a20=a02=1/2R).
F=F000+wF100+lF011+12w2F200+12l2F020+12w3F300+12wl2F120.
mλ=σ(sinαsinβλ),
rλ=rHcos(βHβλ).
f[r,α,rH,βH,a20,rC,zC,γ,rD,zD,δ]=minλ1λ2(F2002+F0202+F3002+F1202)dλ,
σ=λ0(sinδsinγ)(sinδ>sinγ).

Metrics