Abstract

We performed two-dimensional (2D) mapping of the electron density in a laser-produced plasma with high spatial and temporal resolution. The plasma was produced by irradiating an aluminum target with 1064 nm, 6 ns pulses from a Nd:YAG laser under vacuum conditions. Stark broadening of the lines was used to estimate the electron density at various locations inside the plasma. The 2D spectral images were captured at different spatial points in the plasma using an imaging spectrograph coupled to an intensified CCD at various times during the plasma expansion. A comparison between radially averaged and radially resolved electron density profiles showed differences in the estimated values at the earlier times of plume evolution and closer distances to the target. However, the measured radially averaged values are consistent with 2D radial profiles at later times and/or farther distances from the target surface.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  2. S. S. Harilal, “Spatial and temporal evolution of argon sparks,” Appl. Opt. 43, 3931–3937 (2004).
    [CrossRef]
  3. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  4. J. B. Ahmed and J. Cowpe, “Experimental and theoretical investigation of a self-absorbed spectral line emitted from laser-induced plasmas,” Appl. Opt. 49, 3607–3612 (2010).
    [CrossRef]
  5. C. Parigger, D. H. Plemmons, and J. W. L. Lewis, “Spatially and temporally resolved electron number density-measurements in a decaying laser-induced plasma using hydrogen-alpha line-profiles,” Appl. Opt. 34, 3325–3330 (1995).
    [CrossRef]
  6. V. N. Rai, H. S. Zhang, F. Y. Yueh, J. P. Singh, and A. Kumar, “Effect of steady magnetic field on laser-induced breakdown spectroscopy,” Appl. Opt. 42, 3662–3669 (2003).
    [CrossRef]
  7. A. K. Rai, V. K. Singh, V. Singh, S. N. Thakur, P. K. Rai, and J. P. Singh, “Quantitative analysis of gallstones using laser-induced breakdown spectroscopy,” Appl. Opt. 47, G38–G47 (2008).
    [CrossRef]
  8. V. Bakshi, EUV Sources for Lithography (SPIE, 2006).
  9. S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
    [CrossRef]
  10. S. S. Harilal, R. W. Coons, P. Hough, and A. Hassanein, “Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas,” Appl. Phys. Lett. 95, 221501 (2009).
    [CrossRef]
  11. D. Campos, S. S. Harilal, and A. Hassanein, “The effect of laser wavelength on emission and particle dynamics of Sn plasma,” J. Appl. Phys. 108, 113305 (2010).
    [CrossRef]
  12. R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
    [CrossRef]
  13. A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro/Nanolithog. MEMS MOEMS 8, 041503 (2009).
    [CrossRef]
  14. S. S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects,” Appl. Phys. B 86, 547–553 (2007).
    [CrossRef]
  15. E. M. Monge, C. Aragon, and J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
    [CrossRef]
  16. J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
    [CrossRef]
  17. D. Campos, S. S. Harilal, and A. Hassanein, “Laser wavelength effects on ionic and atomic emission from tin plasmas,” Appl. Phys. Lett. 96, 151501 (2010).
    [CrossRef]
  18. M. A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, “Electron and excited particle densities in a carbon ablation plume,” Appl. Surf. Sci. 197, 257–262 (2002).
    [CrossRef]
  19. B. Toftmann, J. Schou, T. N. Hansen, and J. G. Lunney, “Evolution of the plasma parameters in the expanding laser ablation plume of silver,” Appl. Surf. Sci. 186, 293–297(2002).
    [CrossRef]
  20. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), Part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010).
    [CrossRef]
  21. I. H. Hutchinson, Principles of Plasma Diagnostics(Cambridge University, 2002).
  22. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
  23. R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419–428 (2004).
    [CrossRef]
  24. J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions: comparison of local and spatially integrated measurements,” Spectrochim. Acta B 59, 1861–1876 (2004).
    [CrossRef]
  25. J. A. Aguilera, C. Aragon, and J. Bengoechea, “Spatial characterization of laser-induced plasmas by deconvolution of spatially resolved spectra,” Appl. Opt. 42, 5938–5946 (2003).
    [CrossRef]
  26. C. Aragon and J. A. Aguilera, “Determination of the local electron number density in laser-induced plasmas by Stark-broadened profiles of spectral lines: comparative results from H-alpha, Fe I and Si II lines,” Spectrochim. Acta B 65, 395–400 (2010).
    [CrossRef]
  27. M. Jedynski, J. Hoffman, W. Mroz, and Z. Szymanski, “Plasma plume induced during ArF laser ablation of hydroxyapatite,” Appl. Surf. Sci. 255, 2230–2236 (2008).
    [CrossRef]
  28. S. S. Harilal, B. O’Shay, M. S. Tillack, and M. V. Mathew, “Spectroscopic characterization of laser produced tin plasma,” J. Appl. Phys. 98, 013306 (2005).
    [CrossRef]
  29. C. Ursu, S. Gurlui, C. Focsa, and G. Popa, “Space- and time-resolved optical diagnosis for the study of laser ablation plasma dynamics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 446–450 (2009).
    [CrossRef]
  30. N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, “Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser,” Eur. Phys. J. D 44, 371–379 (2007).
    [CrossRef]
  31. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
  32. K. F. Al-Shboul, S. S. Harilal, and A. Hassanein, “Gas dynamic effects on formation of dimers in laser-produced carbon plasmas,” Appl. Phys. Lett. 99, 131506 (2011).
    [CrossRef]
  33. NIST Atomic Spectra Database Lines Data, http://www.nist.gov/pml/data/asd.cfm .
  34. G. Cristoforetti, “Orthogonal double-pulse versus single-pulse laser ablation at different air pressures: a comparison of the mass removal mechanisms,” Spectrochim. Acta B 64, 26–34 (2009).
    [CrossRef]
  35. R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997).
    [CrossRef]
  36. J. T. Knudtson, W. B. Green, and D. G. Sutton, “The UV-visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
    [CrossRef]
  37. E. Sarandaev and M. K. Salakhov, “Regularities in the stark widths and shifts of spectral lines of singly ionized Al,” J. Quant. Spectrosc. Radiat. Transfer 56, 399–407 (1996).
    [CrossRef]
  38. A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and H. R. Griem, “Stark-broadening measurement and calculations for a singly ionized Al line,” Phys. Rev. A 11, 477–479 (1975).
    [CrossRef]
  39. M. A. Khater, J. T. Costello, and E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–983 (2002).
    [CrossRef]

2011 (1)

K. F. Al-Shboul, S. S. Harilal, and A. Hassanein, “Gas dynamic effects on formation of dimers in laser-produced carbon plasmas,” Appl. Phys. Lett. 99, 131506 (2011).
[CrossRef]

2010 (6)

C. Aragon and J. A. Aguilera, “Determination of the local electron number density in laser-induced plasmas by Stark-broadened profiles of spectral lines: comparative results from H-alpha, Fe I and Si II lines,” Spectrochim. Acta B 65, 395–400 (2010).
[CrossRef]

D. Campos, S. S. Harilal, and A. Hassanein, “The effect of laser wavelength on emission and particle dynamics of Sn plasma,” J. Appl. Phys. 108, 113305 (2010).
[CrossRef]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

D. Campos, S. S. Harilal, and A. Hassanein, “Laser wavelength effects on ionic and atomic emission from tin plasmas,” Appl. Phys. Lett. 96, 151501 (2010).
[CrossRef]

J. B. Ahmed and J. Cowpe, “Experimental and theoretical investigation of a self-absorbed spectral line emitted from laser-induced plasmas,” Appl. Opt. 49, 3607–3612 (2010).
[CrossRef]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), Part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010).
[CrossRef]

2009 (4)

S. S. Harilal, R. W. Coons, P. Hough, and A. Hassanein, “Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas,” Appl. Phys. Lett. 95, 221501 (2009).
[CrossRef]

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro/Nanolithog. MEMS MOEMS 8, 041503 (2009).
[CrossRef]

C. Ursu, S. Gurlui, C. Focsa, and G. Popa, “Space- and time-resolved optical diagnosis for the study of laser ablation plasma dynamics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 446–450 (2009).
[CrossRef]

G. Cristoforetti, “Orthogonal double-pulse versus single-pulse laser ablation at different air pressures: a comparison of the mass removal mechanisms,” Spectrochim. Acta B 64, 26–34 (2009).
[CrossRef]

2008 (2)

M. Jedynski, J. Hoffman, W. Mroz, and Z. Szymanski, “Plasma plume induced during ArF laser ablation of hydroxyapatite,” Appl. Surf. Sci. 255, 2230–2236 (2008).
[CrossRef]

A. K. Rai, V. K. Singh, V. Singh, S. N. Thakur, P. K. Rai, and J. P. Singh, “Quantitative analysis of gallstones using laser-induced breakdown spectroscopy,” Appl. Opt. 47, G38–G47 (2008).
[CrossRef]

2007 (2)

N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, “Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser,” Eur. Phys. J. D 44, 371–379 (2007).
[CrossRef]

S. S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects,” Appl. Phys. B 86, 547–553 (2007).
[CrossRef]

2006 (1)

S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
[CrossRef]

2005 (1)

S. S. Harilal, B. O’Shay, M. S. Tillack, and M. V. Mathew, “Spectroscopic characterization of laser produced tin plasma,” J. Appl. Phys. 98, 013306 (2005).
[CrossRef]

2004 (3)

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419–428 (2004).
[CrossRef]

J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions: comparison of local and spatially integrated measurements,” Spectrochim. Acta B 59, 1861–1876 (2004).
[CrossRef]

S. S. Harilal, “Spatial and temporal evolution of argon sparks,” Appl. Opt. 43, 3931–3937 (2004).
[CrossRef]

2003 (2)

2002 (4)

M. A. Khater, J. T. Costello, and E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–983 (2002).
[CrossRef]

J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
[CrossRef]

M. A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, “Electron and excited particle densities in a carbon ablation plume,” Appl. Surf. Sci. 197, 257–262 (2002).
[CrossRef]

B. Toftmann, J. Schou, T. N. Hansen, and J. G. Lunney, “Evolution of the plasma parameters in the expanding laser ablation plume of silver,” Appl. Surf. Sci. 186, 293–297(2002).
[CrossRef]

1999 (1)

E. M. Monge, C. Aragon, and J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

1997 (1)

R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997).
[CrossRef]

1996 (1)

E. Sarandaev and M. K. Salakhov, “Regularities in the stark widths and shifts of spectral lines of singly ionized Al,” J. Quant. Spectrosc. Radiat. Transfer 56, 399–407 (1996).
[CrossRef]

1995 (1)

1987 (1)

J. T. Knudtson, W. B. Green, and D. G. Sutton, “The UV-visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

1975 (1)

A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and H. R. Griem, “Stark-broadening measurement and calculations for a singly ionized Al line,” Phys. Rev. A 11, 477–479 (1975).
[CrossRef]

Aguilera, J. A.

C. Aragon and J. A. Aguilera, “Determination of the local electron number density in laser-induced plasmas by Stark-broadened profiles of spectral lines: comparative results from H-alpha, Fe I and Si II lines,” Spectrochim. Acta B 65, 395–400 (2010).
[CrossRef]

J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions: comparison of local and spatially integrated measurements,” Spectrochim. Acta B 59, 1861–1876 (2004).
[CrossRef]

J. A. Aguilera, C. Aragon, and J. Bengoechea, “Spatial characterization of laser-induced plasmas by deconvolution of spatially resolved spectra,” Appl. Opt. 42, 5938–5946 (2003).
[CrossRef]

J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
[CrossRef]

E. M. Monge, C. Aragon, and J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

Ahmed, J. B.

Allen, A. W.

A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and H. R. Griem, “Stark-broadening measurement and calculations for a singly ionized Al line,” Phys. Rev. A 11, 477–479 (1975).
[CrossRef]

Al-Shboul, K. F.

K. F. Al-Shboul, S. S. Harilal, and A. Hassanein, “Gas dynamic effects on formation of dimers in laser-produced carbon plasmas,” Appl. Phys. Lett. 99, 131506 (2011).
[CrossRef]

Aragon, C.

C. Aragon and J. A. Aguilera, “Determination of the local electron number density in laser-induced plasmas by Stark-broadened profiles of spectral lines: comparative results from H-alpha, Fe I and Si II lines,” Spectrochim. Acta B 65, 395–400 (2010).
[CrossRef]

J. A. Aguilera, C. Aragon, and J. Bengoechea, “Spatial characterization of laser-induced plasmas by deconvolution of spatially resolved spectra,” Appl. Opt. 42, 5938–5946 (2003).
[CrossRef]

J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
[CrossRef]

E. M. Monge, C. Aragon, and J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

Aragón, C.

J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions: comparison of local and spatially integrated measurements,” Spectrochim. Acta B 59, 1861–1876 (2004).
[CrossRef]

Back, C. A.

S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
[CrossRef]

Baig, M. A.

N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, “Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser,” Eur. Phys. J. D 44, 371–379 (2007).
[CrossRef]

Bakshi, V.

V. Bakshi, EUV Sources for Lithography (SPIE, 2006).

Bengoechea, J.

Bindhu, C. V.

R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997).
[CrossRef]

Blaha, M.

A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and H. R. Griem, “Stark-broadening measurement and calculations for a singly ionized Al line,” Phys. Rev. A 11, 477–479 (1975).
[CrossRef]

Bratescu, M. A.

M. A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, “Electron and excited particle densities in a carbon ablation plume,” Appl. Surf. Sci. 197, 257–262 (2002).
[CrossRef]

Campos, D.

D. Campos, S. S. Harilal, and A. Hassanein, “The effect of laser wavelength on emission and particle dynamics of Sn plasma,” J. Appl. Phys. 108, 113305 (2010).
[CrossRef]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

D. Campos, S. S. Harilal, and A. Hassanein, “Laser wavelength effects on ionic and atomic emission from tin plasmas,” Appl. Phys. Lett. 96, 151501 (2010).
[CrossRef]

Chrisey, D. B.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

Coons, R. W.

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

S. S. Harilal, R. W. Coons, P. Hough, and A. Hassanein, “Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas,” Appl. Phys. Lett. 95, 221501 (2009).
[CrossRef]

Costello, J. T.

Cowpe, J.

Cristoforetti, G.

G. Cristoforetti, “Orthogonal double-pulse versus single-pulse laser ablation at different air pressures: a comparison of the mass removal mechanisms,” Spectrochim. Acta B 64, 26–34 (2009).
[CrossRef]

Focsa, C.

C. Ursu, S. Gurlui, C. Focsa, and G. Popa, “Space- and time-resolved optical diagnosis for the study of laser ablation plasma dynamics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 446–450 (2009).
[CrossRef]

Green, W. B.

J. T. Knudtson, W. B. Green, and D. G. Sutton, “The UV-visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

Griem, H. R.

A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and H. R. Griem, “Stark-broadening measurement and calculations for a singly ionized Al line,” Phys. Rev. A 11, 477–479 (1975).
[CrossRef]

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).

Gurlui, S.

C. Ursu, S. Gurlui, C. Focsa, and G. Popa, “Space- and time-resolved optical diagnosis for the study of laser ablation plasma dynamics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 446–450 (2009).
[CrossRef]

Hafeez, S.

N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, “Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser,” Eur. Phys. J. D 44, 371–379 (2007).
[CrossRef]

Hahn, D. W.

Hansen, T. N.

B. Toftmann, J. Schou, T. N. Hansen, and J. G. Lunney, “Evolution of the plasma parameters in the expanding laser ablation plume of silver,” Appl. Surf. Sci. 186, 293–297(2002).
[CrossRef]

Harilal, S.

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro/Nanolithog. MEMS MOEMS 8, 041503 (2009).
[CrossRef]

Harilal, S. S.

K. F. Al-Shboul, S. S. Harilal, and A. Hassanein, “Gas dynamic effects on formation of dimers in laser-produced carbon plasmas,” Appl. Phys. Lett. 99, 131506 (2011).
[CrossRef]

D. Campos, S. S. Harilal, and A. Hassanein, “The effect of laser wavelength on emission and particle dynamics of Sn plasma,” J. Appl. Phys. 108, 113305 (2010).
[CrossRef]

D. Campos, S. S. Harilal, and A. Hassanein, “Laser wavelength effects on ionic and atomic emission from tin plasmas,” Appl. Phys. Lett. 96, 151501 (2010).
[CrossRef]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

S. S. Harilal, R. W. Coons, P. Hough, and A. Hassanein, “Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas,” Appl. Phys. Lett. 95, 221501 (2009).
[CrossRef]

S. S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects,” Appl. Phys. B 86, 547–553 (2007).
[CrossRef]

S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
[CrossRef]

S. S. Harilal, B. O’Shay, M. S. Tillack, and M. V. Mathew, “Spectroscopic characterization of laser produced tin plasma,” J. Appl. Phys. 98, 013306 (2005).
[CrossRef]

S. S. Harilal, “Spatial and temporal evolution of argon sparks,” Appl. Opt. 43, 3931–3937 (2004).
[CrossRef]

R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997).
[CrossRef]

Hassanein, A.

K. F. Al-Shboul, S. S. Harilal, and A. Hassanein, “Gas dynamic effects on formation of dimers in laser-produced carbon plasmas,” Appl. Phys. Lett. 99, 131506 (2011).
[CrossRef]

D. Campos, S. S. Harilal, and A. Hassanein, “The effect of laser wavelength on emission and particle dynamics of Sn plasma,” J. Appl. Phys. 108, 113305 (2010).
[CrossRef]

D. Campos, S. S. Harilal, and A. Hassanein, “Laser wavelength effects on ionic and atomic emission from tin plasmas,” Appl. Phys. Lett. 96, 151501 (2010).
[CrossRef]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

S. S. Harilal, R. W. Coons, P. Hough, and A. Hassanein, “Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas,” Appl. Phys. Lett. 95, 221501 (2009).
[CrossRef]

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro/Nanolithog. MEMS MOEMS 8, 041503 (2009).
[CrossRef]

Hoffman, J.

M. Jedynski, J. Hoffman, W. Mroz, and Z. Szymanski, “Plasma plume induced during ArF laser ablation of hydroxyapatite,” Appl. Surf. Sci. 255, 2230–2236 (2008).
[CrossRef]

Hough, P.

S. S. Harilal, R. W. Coons, P. Hough, and A. Hassanein, “Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas,” Appl. Phys. Lett. 95, 221501 (2009).
[CrossRef]

Hubler, G. K.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

Hutchinson, I. H.

I. H. Hutchinson, Principles of Plasma Diagnostics(Cambridge University, 2002).

Issac, R. C.

R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997).
[CrossRef]

Jedynski, M.

M. Jedynski, J. Hoffman, W. Mroz, and Z. Szymanski, “Plasma plume induced during ArF laser ablation of hydroxyapatite,” Appl. Surf. Sci. 255, 2230–2236 (2008).
[CrossRef]

Jones, W. W.

A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and H. R. Griem, “Stark-broadening measurement and calculations for a singly ionized Al line,” Phys. Rev. A 11, 477–479 (1975).
[CrossRef]

Kennedy, E. T.

Khater, M. A.

Knudtson, J. T.

J. T. Knudtson, W. B. Green, and D. G. Sutton, “The UV-visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

Kumar, A.

Lewis, J. W. L.

Lunney, J. G.

B. Toftmann, J. Schou, T. N. Hansen, and J. G. Lunney, “Evolution of the plasma parameters in the expanding laser ablation plume of silver,” Appl. Surf. Sci. 186, 293–297(2002).
[CrossRef]

Mathew, M. V.

S. S. Harilal, B. O’Shay, M. S. Tillack, and M. V. Mathew, “Spectroscopic characterization of laser produced tin plasma,” J. Appl. Phys. 98, 013306 (2005).
[CrossRef]

Monge, E. M.

E. M. Monge, C. Aragon, and J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

Mroz, W.

M. Jedynski, J. Hoffman, W. Mroz, and Z. Szymanski, “Plasma plume induced during ArF laser ablation of hydroxyapatite,” Appl. Surf. Sci. 255, 2230–2236 (2008).
[CrossRef]

Nampoori, V. P. N.

R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997).
[CrossRef]

Nikroo, A.

S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
[CrossRef]

Noll, R.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419–428 (2004).
[CrossRef]

O’Shay, B.

S. S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects,” Appl. Phys. B 86, 547–553 (2007).
[CrossRef]

S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
[CrossRef]

S. S. Harilal, B. O’Shay, M. S. Tillack, and M. V. Mathew, “Spectroscopic characterization of laser produced tin plasma,” J. Appl. Phys. 98, 013306 (2005).
[CrossRef]

Omenetto, N.

Paguio, R.

S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
[CrossRef]

Parigger, C.

Plemmons, D. H.

Popa, G.

C. Ursu, S. Gurlui, C. Focsa, and G. Popa, “Space- and time-resolved optical diagnosis for the study of laser ablation plasma dynamics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 446–450 (2009).
[CrossRef]

Rai, A. K.

Rai, P. K.

Rai, V. N.

Rashid, B.

N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, “Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser,” Eur. Phys. J. D 44, 371–379 (2007).
[CrossRef]

Sakai, Y.

M. A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, “Electron and excited particle densities in a carbon ablation plume,” Appl. Surf. Sci. 197, 257–262 (2002).
[CrossRef]

Salakhov, M. K.

E. Sarandaev and M. K. Salakhov, “Regularities in the stark widths and shifts of spectral lines of singly ionized Al,” J. Quant. Spectrosc. Radiat. Transfer 56, 399–407 (1996).
[CrossRef]

Sanchez, A.

A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and H. R. Griem, “Stark-broadening measurement and calculations for a singly ionized Al line,” Phys. Rev. A 11, 477–479 (1975).
[CrossRef]

Sarandaev, E.

E. Sarandaev and M. K. Salakhov, “Regularities in the stark widths and shifts of spectral lines of singly ionized Al,” J. Quant. Spectrosc. Radiat. Transfer 56, 399–407 (1996).
[CrossRef]

Sattmann, R.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419–428 (2004).
[CrossRef]

Schou, J.

B. Toftmann, J. Schou, T. N. Hansen, and J. G. Lunney, “Evolution of the plasma parameters in the expanding laser ablation plume of silver,” Appl. Surf. Sci. 186, 293–297(2002).
[CrossRef]

Shaikh, N. M.

N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, “Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser,” Eur. Phys. J. D 44, 371–379 (2007).
[CrossRef]

Singh, J. P.

Singh, V.

Singh, V. K.

Sizyuk, T.

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro/Nanolithog. MEMS MOEMS 8, 041503 (2009).
[CrossRef]

Sizyuk, V.

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro/Nanolithog. MEMS MOEMS 8, 041503 (2009).
[CrossRef]

Sturm, V.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419–428 (2004).
[CrossRef]

Suda, Y.

M. A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, “Electron and excited particle densities in a carbon ablation plume,” Appl. Surf. Sci. 197, 257–262 (2002).
[CrossRef]

Sugawara, H.

M. A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, “Electron and excited particle densities in a carbon ablation plume,” Appl. Surf. Sci. 197, 257–262 (2002).
[CrossRef]

Sutton, D. G.

J. T. Knudtson, W. B. Green, and D. G. Sutton, “The UV-visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

Szymanski, Z.

M. Jedynski, J. Hoffman, W. Mroz, and Z. Szymanski, “Plasma plume induced during ArF laser ablation of hydroxyapatite,” Appl. Surf. Sci. 255, 2230–2236 (2008).
[CrossRef]

Tao, Y.

S. S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects,” Appl. Phys. B 86, 547–553 (2007).
[CrossRef]

S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
[CrossRef]

Thakur, S. N.

Tillack, M. S.

S. S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects,” Appl. Phys. B 86, 547–553 (2007).
[CrossRef]

S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
[CrossRef]

S. S. Harilal, B. O’Shay, M. S. Tillack, and M. V. Mathew, “Spectroscopic characterization of laser produced tin plasma,” J. Appl. Phys. 98, 013306 (2005).
[CrossRef]

Toftmann, B.

B. Toftmann, J. Schou, T. N. Hansen, and J. G. Lunney, “Evolution of the plasma parameters in the expanding laser ablation plume of silver,” Appl. Surf. Sci. 186, 293–297(2002).
[CrossRef]

Ursu, C.

C. Ursu, S. Gurlui, C. Focsa, and G. Popa, “Space- and time-resolved optical diagnosis for the study of laser ablation plasma dynamics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 446–450 (2009).
[CrossRef]

Vallabhan, C. P. G.

R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997).
[CrossRef]

Varier, G. K.

R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997).
[CrossRef]

Winkelmann, S.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419–428 (2004).
[CrossRef]

Yamaoka, D.

M. A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, “Electron and excited particle densities in a carbon ablation plume,” Appl. Surf. Sci. 197, 257–262 (2002).
[CrossRef]

Yueh, F. Y.

Zhang, H. S.

Appl. Opt. (6)

Appl. Phys. A (1)

E. M. Monge, C. Aragon, and J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999).
[CrossRef]

Appl. Phys. B (1)

S. S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects,” Appl. Phys. B 86, 547–553 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

K. F. Al-Shboul, S. S. Harilal, and A. Hassanein, “Gas dynamic effects on formation of dimers in laser-produced carbon plasmas,” Appl. Phys. Lett. 99, 131506 (2011).
[CrossRef]

S. S. Harilal, R. W. Coons, P. Hough, and A. Hassanein, “Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas,” Appl. Phys. Lett. 95, 221501 (2009).
[CrossRef]

D. Campos, S. S. Harilal, and A. Hassanein, “Laser wavelength effects on ionic and atomic emission from tin plasmas,” Appl. Phys. Lett. 96, 151501 (2010).
[CrossRef]

Appl. Spectrosc. (2)

Appl. Surf. Sci. (4)

M. A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, “Electron and excited particle densities in a carbon ablation plume,” Appl. Surf. Sci. 197, 257–262 (2002).
[CrossRef]

B. Toftmann, J. Schou, T. N. Hansen, and J. G. Lunney, “Evolution of the plasma parameters in the expanding laser ablation plume of silver,” Appl. Surf. Sci. 186, 293–297(2002).
[CrossRef]

M. Jedynski, J. Hoffman, W. Mroz, and Z. Szymanski, “Plasma plume induced during ArF laser ablation of hydroxyapatite,” Appl. Surf. Sci. 255, 2230–2236 (2008).
[CrossRef]

J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002).
[CrossRef]

Eur. Phys. J. D (1)

N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, “Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser,” Eur. Phys. J. D 44, 371–379 (2007).
[CrossRef]

J. Anal. At. Spectrom. (1)

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419–428 (2004).
[CrossRef]

J. Appl. Phys. (4)

S. S. Harilal, B. O’Shay, M. S. Tillack, and M. V. Mathew, “Spectroscopic characterization of laser produced tin plasma,” J. Appl. Phys. 98, 013306 (2005).
[CrossRef]

D. Campos, S. S. Harilal, and A. Hassanein, “The effect of laser wavelength on emission and particle dynamics of Sn plasma,” J. Appl. Phys. 108, 113305 (2010).
[CrossRef]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

J. T. Knudtson, W. B. Green, and D. G. Sutton, “The UV-visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987).
[CrossRef]

J. Micro/Nanolithog. MEMS MOEMS (1)

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro/Nanolithog. MEMS MOEMS 8, 041503 (2009).
[CrossRef]

J. Phys. D (1)

S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

E. Sarandaev and M. K. Salakhov, “Regularities in the stark widths and shifts of spectral lines of singly ionized Al,” J. Quant. Spectrosc. Radiat. Transfer 56, 399–407 (1996).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. Sect. B (1)

C. Ursu, S. Gurlui, C. Focsa, and G. Popa, “Space- and time-resolved optical diagnosis for the study of laser ablation plasma dynamics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 446–450 (2009).
[CrossRef]

Phys. Rev. A (1)

A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and H. R. Griem, “Stark-broadening measurement and calculations for a singly ionized Al line,” Phys. Rev. A 11, 477–479 (1975).
[CrossRef]

Spectrochim. Acta B (4)

G. Cristoforetti, “Orthogonal double-pulse versus single-pulse laser ablation at different air pressures: a comparison of the mass removal mechanisms,” Spectrochim. Acta B 64, 26–34 (2009).
[CrossRef]

R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997).
[CrossRef]

J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions: comparison of local and spatially integrated measurements,” Spectrochim. Acta B 59, 1861–1876 (2004).
[CrossRef]

C. Aragon and J. A. Aguilera, “Determination of the local electron number density in laser-induced plasmas by Stark-broadened profiles of spectral lines: comparative results from H-alpha, Fe I and Si II lines,” Spectrochim. Acta B 65, 395–400 (2010).
[CrossRef]

Other (7)

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

I. H. Hutchinson, Principles of Plasma Diagnostics(Cambridge University, 2002).

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).

V. Bakshi, EUV Sources for Lithography (SPIE, 2006).

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).

NIST Atomic Spectra Database Lines Data, http://www.nist.gov/pml/data/asd.cfm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Emission resulting from 466.3 nm Al+ line. Image is taken at a time of 50 ns and at a distance of 1 mm. For 1D measurement, the average intensity value obtained from 100 pixels in the center region (which is equivalent to 1.3 mm) was used for deducing electron density. For 2D measurement, the emission from 10 axial pixels (corresponding to 130 µm of the plasma height) was averaged at various radial distances.

Fig. 2.
Fig. 2.

Examples of the Stark broadened profiles taken from 1D time-resolved spectra at 50 (top) and 100 ns (bottom) after the laser pulse. Solid points represent the experimental data and smooth curves are the Lorentz fits.

Fig. 3.
Fig. 3.

Electron density variation with distance from the target surface. The data is radially averaged and obtained with an integration time of 1 µs.

Fig. 4.
Fig. 4.

Time-resolved measurements of the electron density taken at 0.5, 1, and 2 mm. Points were taken from experimental data and solid curves are fitted to the data. The integration time is incrementally increased from 10 to 60 ns to compensate the reduction in emission intensity.

Fig. 5.
Fig. 5.

Radial profile of the density recorded at 50 ns and at a distance of 1 mm from the target surface.

Fig. 6.
Fig. 6.

2D time-resolved measurements of the electron density. 2D plots were taken at 50 (top), 100 (middle), and 200 ns (bottom) using 466.3 nm Al+ line. A color scale is used to show regions of varying electron density. The integration times used are 10, 20, and 40 ns, respectively, for obtaining the density plots at 50, 100, and 200 ns.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δw1/2=[(wg2+(wl/2)2)]1/2+wl/2,
Δλ1/2=2ω(ne1016)+3.5A(ne1016)1/4[134ND1/3]ω(ne1016)A˙,
Δλ1/2=2ω(ne1016).

Metrics