Abstract

In this report, we present an analysis for the primary chromatic aberrations of a diffractive lens on a spherically curved substrate having nonunity refractive index. This analysis facilitates achieving an optimal thin lens layout during structural design of the diffractive lens with prespecified targets for primary chromatic aberrations. Sets of nomographs that provide ready estimates for these aberrations are also given.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE Press, 2004).
  2. V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements, Wiley Series in Lasers and Applications (Wiley-Interscience, 2001).
  3. L. N. Hazra, “Diffractive optical elements: past, present and future,” Proc. SPIE 3729, 198–212 (1999).
  4. H. P. Herzig, “Design of refractive and diffractive microoptics,” in Micro-optics, H. P. Herzig, ed. (Taylor and Francis, 1997), pp. 1–30.
  5. URL: http://www.canon.com .
  6. W. C. Sweatt, “Describing holographic optical elements as lenses,” J. Opt. Soc. Am. 67, 803–808 (1977).
    [CrossRef]
  7. W. A. Kleinhans, “Aberrations of curved zone plates and Fresnel lenses,” Appl. Opt. 16, 1701–1704 (1977).
    [CrossRef]
  8. W. C. Sweatt, S. A. Kemme, and M. E. Warren, “Diffractive optical elements,” in Optical Engineer’s Desk Reference, W. L. Wolfe, ed. (OSA-SPIE, 2003), pp. 347–370.
  9. M. W. Farn and W. B. Veldkamp, “Binary optics,” in OSA Handbook of Optics (McGraw-Hill, 1995), Vol. II, pp. 8.1–8.19.
  10. T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
    [CrossRef]
  11. D. A. Buralli and G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151–2158 (1991).
    [CrossRef]
  12. U. Dutta and L. N. Hazra, “Monochromatic primary aberrations of diffractive lens on finite substrate,” Appl. Opt. 49, 3613–3621 (2010).
    [CrossRef]
  13. L. N. Hazra, Y. Han, and C. A. Delisle, “Kinoform lenses: Sweatt model and phase function,” Opt. Commun. 117, 31–36(1995).
    [CrossRef]
  14. L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15, 945–953 (1998).
    [CrossRef]

2010 (1)

1999 (1)

L. N. Hazra, “Diffractive optical elements: past, present and future,” Proc. SPIE 3729, 198–212 (1999).

1998 (1)

1995 (1)

L. N. Hazra, Y. Han, and C. A. Delisle, “Kinoform lenses: Sweatt model and phase function,” Opt. Commun. 117, 31–36(1995).
[CrossRef]

1991 (1)

1988 (1)

1977 (2)

Buralli, D. A.

Delisle, C. A.

L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15, 945–953 (1998).
[CrossRef]

L. N. Hazra, Y. Han, and C. A. Delisle, “Kinoform lenses: Sweatt model and phase function,” Opt. Commun. 117, 31–36(1995).
[CrossRef]

Dutta, U.

Farn, M. W.

M. W. Farn and W. B. Veldkamp, “Binary optics,” in OSA Handbook of Optics (McGraw-Hill, 1995), Vol. II, pp. 8.1–8.19.

George, N.

Han, Y.

L. N. Hazra, Y. Han, and C. A. Delisle, “Kinoform lenses: Sweatt model and phase function,” Opt. Commun. 117, 31–36(1995).
[CrossRef]

Hazra, L. N.

U. Dutta and L. N. Hazra, “Monochromatic primary aberrations of diffractive lens on finite substrate,” Appl. Opt. 49, 3613–3621 (2010).
[CrossRef]

L. N. Hazra, “Diffractive optical elements: past, present and future,” Proc. SPIE 3729, 198–212 (1999).

L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15, 945–953 (1998).
[CrossRef]

L. N. Hazra, Y. Han, and C. A. Delisle, “Kinoform lenses: Sweatt model and phase function,” Opt. Commun. 117, 31–36(1995).
[CrossRef]

Herzig, H. P.

H. P. Herzig, “Design of refractive and diffractive microoptics,” in Micro-optics, H. P. Herzig, ed. (Taylor and Francis, 1997), pp. 1–30.

Kathman, A. D.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE Press, 2004).

Kemme, S. A.

W. C. Sweatt, S. A. Kemme, and M. E. Warren, “Diffractive optical elements,” in Optical Engineer’s Desk Reference, W. L. Wolfe, ed. (OSA-SPIE, 2003), pp. 347–370.

Kleinhans, W. A.

Morris, G. M.

O’Shea, D. C.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE Press, 2004).

Prather, D. W.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE Press, 2004).

Soifer, V. A.

V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements, Wiley Series in Lasers and Applications (Wiley-Interscience, 2001).

Stone, T.

Suleski, T. J.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE Press, 2004).

Sweatt, W. C.

W. C. Sweatt, “Describing holographic optical elements as lenses,” J. Opt. Soc. Am. 67, 803–808 (1977).
[CrossRef]

W. C. Sweatt, S. A. Kemme, and M. E. Warren, “Diffractive optical elements,” in Optical Engineer’s Desk Reference, W. L. Wolfe, ed. (OSA-SPIE, 2003), pp. 347–370.

Veldkamp, W. B.

M. W. Farn and W. B. Veldkamp, “Binary optics,” in OSA Handbook of Optics (McGraw-Hill, 1995), Vol. II, pp. 8.1–8.19.

Warren, M. E.

W. C. Sweatt, S. A. Kemme, and M. E. Warren, “Diffractive optical elements,” in Optical Engineer’s Desk Reference, W. L. Wolfe, ed. (OSA-SPIE, 2003), pp. 347–370.

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

L. N. Hazra, Y. Han, and C. A. Delisle, “Kinoform lenses: Sweatt model and phase function,” Opt. Commun. 117, 31–36(1995).
[CrossRef]

Proc. SPIE (1)

L. N. Hazra, “Diffractive optical elements: past, present and future,” Proc. SPIE 3729, 198–212 (1999).

Other (6)

H. P. Herzig, “Design of refractive and diffractive microoptics,” in Micro-optics, H. P. Herzig, ed. (Taylor and Francis, 1997), pp. 1–30.

URL: http://www.canon.com .

W. C. Sweatt, S. A. Kemme, and M. E. Warren, “Diffractive optical elements,” in Optical Engineer’s Desk Reference, W. L. Wolfe, ed. (OSA-SPIE, 2003), pp. 347–370.

M. W. Farn and W. B. Veldkamp, “Binary optics,” in OSA Handbook of Optics (McGraw-Hill, 1995), Vol. II, pp. 8.1–8.19.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE Press, 2004).

V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements, Wiley Series in Lasers and Applications (Wiley-Interscience, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Variation of ΓL with the shape variable B and conjugate variable Y, with (a) N-BK7 glass (δn=0.008054,D=0.00531) and (b) N-SF6 glass (δn=0.03175,D=0.017588) as the substrate materials. Note the change in scale along vertical axis.

Fig. 2.
Fig. 2.

Variation of ΓL with the shape variable B for different substrate materials at values of Y: (a) Y=5, (b) Y=3, (c) Y=1, (d) Y=0, (e) Y=+1, (f) Y=+3, (g) Y=+5. Substrate materials: N-BK7 (D=0.00531), LF2 (D=0.009061), N-SF6 (D=0.017588).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

CL=12h2K[{1μn+1μn}δμ{δnn(μn)+δnn(μn)}μ+{δμμ(nμnnμn)(δnμnδnμn)}X+(δnnδnn)Y],
CL=12h2K[{1μn+1μn}δμ{δnn(μn)+δnn(μn)}μ+{δμμ(nμnnμn)(δnμnδnμn)}Bμ+(δnnδnn)Y].
D˜=λ1λ2λ¯,
CL=12h2K[2D˜(D+D)+{D˜(nn)(δnδn)}B+(DD)Y].
CL=12h2K[2D˜D+{D˜(n1)δn}B+DY].
ΓL=CLh2K=12[2D˜D+{D˜(n1)δn}B+DY].
CT=H(DD),
CT=HD.
ΓT=CTH=D.

Metrics