Abstract

We report on experimental implementation of a multifunctional two-photon state analyzer. The device aims to be compact and able to provide several important characteristics about any two-photon quantum state. It operates in two modes: first mode is the two-photon interference analysis giving the information about spectral properties of the photons and the degree of mutual indistinguishability. The second mode provides polarization analysis and complete two-photon state tomography. Density matrix estimated from the tomography data reveals namely the quantum state purity or negativity. This device was tested on the photon pairs generated by the Kwiat source.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. D. Bruß and G. Leuchs, Lectures on Quantum Information (Wiley-VCH, 2007).
  3. A. V. Belinsky and D. N. Klyshko, “Two-photon wave packets,” Laser Physics 4, 663–666 (1994).
  4. A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53, 4360–4363(1996).
    [CrossRef]
  5. G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475(1997).
    [CrossRef]
  6. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
    [CrossRef]
  7. J. Svozilik and J. Perina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
    [CrossRef]
  8. J. Perina, and J. Svozilik, “Randomly poled nonlinear crystals as a source of photon pairs,” Phys. Rev. A 83, 033808 (2011).
  9. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2001).
  10. D. Dieks, “Communication by EPR devices,” Phys. Lett. A 92, 271–272 (1982).
  11. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, e-print: quant-ph/0702225v2.
  12. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [CrossRef]
  13. T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” Phys. Rev. Lett. 74, 4087 (1995).
    [CrossRef]
  14. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [CrossRef]
  15. T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996).
    [CrossRef]
  16. J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003).
    [CrossRef]
  17. Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
    [CrossRef]
  18. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).
  19. S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of Bell inequalities for mixed states,” Phys. Rev. Lett. 68, 3259–3261 (1992).
    [CrossRef]
  20. M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, “Interferometric Bell-state analysis,” Phys. Rev. A 53, R1209–R1212(1996).
    [CrossRef]
  21. M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Phys. Rev. A 68, 012305(2003).
    [CrossRef]
  22. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
    [CrossRef]

2011

J. Perina, and J. Svozilik, “Randomly poled nonlinear crystals as a source of photon pairs,” Phys. Rev. A 83, 033808 (2011).

2009

J. Svozilik and J. Perina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[CrossRef]

2007

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

2005

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

2003

J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003).
[CrossRef]

M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Phys. Rev. A 68, 012305(2003).
[CrossRef]

1999

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

1997

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475(1997).
[CrossRef]

1996

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53, 4360–4363(1996).
[CrossRef]

M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, “Interferometric Bell-state analysis,” Phys. Rev. A 53, R1209–R1212(1996).
[CrossRef]

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996).
[CrossRef]

1995

T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” Phys. Rev. Lett. 74, 4087 (1995).
[CrossRef]

1994

A. V. Belinsky and D. N. Klyshko, “Two-photon wave packets,” Laser Physics 4, 663–666 (1994).

1992

S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of Bell inequalities for mixed states,” Phys. Rev. Lett. 68, 3259–3261 (1992).
[CrossRef]

1988

Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
[CrossRef]

1987

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

1982

D. Dieks, “Communication by EPR devices,” Phys. Lett. A 92, 271–272 (1982).

1964

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Belinsky, A. V.

A. V. Belinsky and D. N. Klyshko, “Two-photon wave packets,” Laser Physics 4, 663–666 (1994).

Bell, J. S.

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).

Bouwmeester, D.

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2001).

Braunstein, S. L.

S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of Bell inequalities for mixed states,” Phys. Rev. Lett. 68, 3259–3261 (1992).
[CrossRef]

Breitenbach, G.

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475(1997).
[CrossRef]

Bruß, D.

D. Bruß and G. Leuchs, Lectures on Quantum Information (Wiley-VCH, 2007).

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Dieks, D.

D. Dieks, “Communication by EPR devices,” Phys. Lett. A 92, 271–272 (1982).

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Dušek, M.

J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003).
[CrossRef]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Ekert, A.

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2001).

Fiurášek, J.

M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Phys. Rev. A 68, 012305(2003).
[CrossRef]

Gossard, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Haderka, O.

J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003).
[CrossRef]

Hanson, M. P.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Hendrych, M.

J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003).
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, e-print: quant-ph/0702225v2.

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, e-print: quant-ph/0702225v2.

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, e-print: quant-ph/0702225v2.

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, e-print: quant-ph/0702225v2.

Hradil, Z.

M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Phys. Rev. A 68, 012305(2003).
[CrossRef]

Ježek, M.

M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Phys. Rev. A 68, 012305(2003).
[CrossRef]

Johnson, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Joobeur, A.

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53, 4360–4363(1996).
[CrossRef]

Klyshko, D. N.

A. V. Belinsky and D. N. Klyshko, “Two-photon wave packets,” Laser Physics 4, 663–666 (1994).

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Laird, E. A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Larchuk, T. S.

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53, 4360–4363(1996).
[CrossRef]

Leuchs, G.

D. Bruß and G. Leuchs, Lectures on Quantum Information (Wiley-VCH, 2007).

Lukin, M. D.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Mandel, L.

Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

Mann, A.

S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of Bell inequalities for mixed states,” Phys. Rev. Lett. 68, 3259–3261 (1992).
[CrossRef]

Marcus, C. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Mattle, K.

M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, “Interferometric Bell-state analysis,” Phys. Rev. A 53, R1209–R1212(1996).
[CrossRef]

Michler, M.

M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, “Interferometric Bell-state analysis,” Phys. Rev. A 53, R1209–R1212(1996).
[CrossRef]

Migdall, A.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996).
[CrossRef]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Mlynek, J.

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475(1997).
[CrossRef]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Ou, Z. Y.

Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

Perina, J.

J. Perina, and J. Svozilik, “Randomly poled nonlinear crystals as a source of photon pairs,” Phys. Rev. A 83, 033808 (2011).

J. Svozilik and J. Perina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[CrossRef]

J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003).
[CrossRef]

Petta, J. R.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Pittman, T. B.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996).
[CrossRef]

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Revzen, M.

S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of Bell inequalities for mixed states,” Phys. Rev. Lett. 68, 3259–3261 (1992).
[CrossRef]

Rubin, M. H.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996).
[CrossRef]

Saleh, B. E. A.

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53, 4360–4363(1996).
[CrossRef]

Schiller, S.

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475(1997).
[CrossRef]

Sergienko, A. V.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996).
[CrossRef]

Shih, Y. H.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996).
[CrossRef]

Sleator, T.

T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” Phys. Rev. Lett. 74, 4087 (1995).
[CrossRef]

Soubusta, J.

J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003).
[CrossRef]

Strekalov, D. V.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996).
[CrossRef]

Svozilik, J.

J. Perina, and J. Svozilik, “Randomly poled nonlinear crystals as a source of photon pairs,” Phys. Rev. A 83, 033808 (2011).

J. Svozilik and J. Perina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[CrossRef]

Taylor, J. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Teich, M. C.

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53, 4360–4363(1996).
[CrossRef]

Trojek, P.

J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003).
[CrossRef]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Weinfurter, H.

M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, “Interferometric Bell-state analysis,” Phys. Rev. A 53, R1209–R1212(1996).
[CrossRef]

T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” Phys. Rev. Lett. 74, 4087 (1995).
[CrossRef]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Yacoby, A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Zeilinger, A.

M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, “Interferometric Bell-state analysis,” Phys. Rev. A 53, R1209–R1212(1996).
[CrossRef]

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2001).

Laser Physics

A. V. Belinsky and D. N. Klyshko, “Two-photon wave packets,” Laser Physics 4, 663–666 (1994).

Nature

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475(1997).
[CrossRef]

Phys. Lett. A

D. Dieks, “Communication by EPR devices,” Phys. Lett. A 92, 271–272 (1982).

J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003).
[CrossRef]

Phys. Rev. A

J. Svozilik and J. Perina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[CrossRef]

J. Perina, and J. Svozilik, “Randomly poled nonlinear crystals as a source of photon pairs,” Phys. Rev. A 83, 033808 (2011).

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53, 4360–4363(1996).
[CrossRef]

M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, “Interferometric Bell-state analysis,” Phys. Rev. A 53, R1209–R1212(1996).
[CrossRef]

M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Phys. Rev. A 68, 012305(2003).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[CrossRef]

Phys. Rev. Lett.

Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
[CrossRef]

S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of Bell inequalities for mixed states,” Phys. Rev. Lett. 68, 3259–3261 (1992).
[CrossRef]

T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” Phys. Rev. Lett. 74, 4087 (1995).
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef]

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996).
[CrossRef]

Physics

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).

Rev. Mod. Phys.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Science

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Other

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2001).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

D. Bruß and G. Leuchs, Lectures on Quantum Information (Wiley-VCH, 2007).

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, e-print: quant-ph/0702225v2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of the experimental setup of the multifunctional detector. HWP denotes half-wave plate, QWP stands for quarter-wave plate, MT is the motorized translation, PBS is the polarizing beam splitter and DET denotes single photon detector.

Fig. 2.
Fig. 2.

Source of entangled photon pairs: Photons are produced in the process of SPDC in a pair of type-I BBO crystals. HWP and QWP are used to set an arbitrary polarization of the pumping beam. Variable diameter apertures (AP) control coupled spectrum.

Fig. 3.
Fig. 3.

HOM dips for maximally entangled triplet state. Different FWHMs are obtained for various spectral filtering. Squares correspond to the first measurement, circles to the second measurement, and triangles to the third measurement as listed in Table 1. Dashed lines represent Gaussian fits. The error bars are derived from the knowledge that the number of coincidences follow the Poisson statistics. Therefore the size of the error bars corresponds to the square root of the measured value. This has been also verified experimentally.

Fig. 4.
Fig. 4.

Density matrix of (a) triplet state, (b) partially entangled state. Only real part is depicted, the imaginary part is negligible (zero in ideal case).

Tables (2)

Tables Icon

Table 1. Coincidence Rate Outside the Interference Region, Visibility, FWHM of the Hom Dip, and Calculated Spectral FWHM for Various Settings of the Coupler Aperture Diameter

Tables Icon

Table 2. Summarized Results of the Polarization Analysis Performed by the Multifunctional Detectora

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

V=Cbl-CminCbl+Cminresp.V=CmaxCbl3CblCmax,
FWHMλ=22ln2πλ2FWHMHOM.
|Ψ(φ)=12(|HV+eiφ|VH).
|Φ(φ)=12(|HH+eiφ|VV).
C0Cbl=1cosφ.
P=Tr[ρ^2]
N=Trρ^ρ^TA12.
|ϕ=cosθ|HH+sinθeiφ|VV.
|ψ=cosθ|HV+sinθeiφ|VH,

Metrics