Abstract

This paper presents experimental optimization of number and geometry of nanotube electrodes in a liquid crystal media from wavefront aberrations for realizing nanophotonic devices. The refractive-index gradient profiles from different nanotube geometries—arrays of one, three, four, and five—were studied along with wavefront aberrations using Zernike polynomials. The optimizations help the device to make application in the areas of voltage reconfigurable microlens arrays, high-resolution displays, wavefront sensors, holograms, and phase modulators.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-Y. Lu and L.-C. Chien, “Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties,” Opt. Express 16, 12777–12785 (2008).
  2. S. J. Jeong, P. Sureshkumar, K.-U. Jeong, A. K. Srivastava, S. H. Lee, S. H. Jeong, Y. H. Lee, R. Lu, and S.-T. Wu, “Unusual double four-lobe textures generated by the motion of carbon nanotubes in a nematic liquid crystal,” Opt. Express 15, 11698–11705 (2007).
    [CrossRef]
  3. T. D. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
    [CrossRef]
  4. R. Rajasekharan, Q. Dai, and T. D. Wilkinson, “Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals,” Appl. Opt. 49, 2099–2104 (2010).
    [CrossRef]
  5. W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
    [CrossRef]
  6. R. Rajasekharan, H. Butt, and T. D. Wilkinson, “Optical phase modulation using a hybrid carbon nanotube-liquid crystal nanophotonic device,” Opt. Lett. 34, 1237–1239(2009).
    [CrossRef]
  7. R. Rajasekharan, C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, “ Electrically reconfigurable nanophotonic hybrid grating lens array,” Appl. Phys. Lett. 96, 233108(2010).
    [CrossRef]
  8. H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Electromagnetic modeling of multiwalled carbon nanotubes as nano-rod electrodes for optimizing device geometry in a nanophotonic device,” IEEE Trans. Nanotechnol. 10, 547–554 (2010).
    [CrossRef]
  9. Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
    [CrossRef]
  10. X. Wang, T. D. Wilkinson, M. Mann, K. B. K. Teo, and W. I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes,” Appl. Opt. 49, 3311–3315 (2010).
    [CrossRef]
  11. R. Rajesekharan, T. D. Wilkinson, P. J. W. Hands, and Q. Dai, “Nanophotonic three-dimensional microscope,” Nano Lett. 11, 2770–2773 (2011).
    [CrossRef]
  12. S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915 (1984).
    [CrossRef]
  13. R. Rajesekharan, C. Bay, J. Freeman, and T. D. Wilkinson, “Analysis of an array of micro lenses using Fourier-transform method,” IET Optoelectron. 4, 210–215 (2010).
    [CrossRef]
  14. H. Ren and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328—11335 (2007).
    [CrossRef]
  15. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
    [CrossRef]
  16. A. K. Kirby, P. J. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15, 13496–13501 (2007).
    [CrossRef]
  17. R. Escalona, “Study of axial absorption in liquids by interferometry,” J. Opt. A 5, S355 (2003).
    [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

2011 (2)

Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
[CrossRef]

R. Rajesekharan, T. D. Wilkinson, P. J. W. Hands, and Q. Dai, “Nanophotonic three-dimensional microscope,” Nano Lett. 11, 2770–2773 (2011).
[CrossRef]

2010 (5)

R. Rajesekharan, C. Bay, J. Freeman, and T. D. Wilkinson, “Analysis of an array of micro lenses using Fourier-transform method,” IET Optoelectron. 4, 210–215 (2010).
[CrossRef]

R. Rajasekharan, C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, “ Electrically reconfigurable nanophotonic hybrid grating lens array,” Appl. Phys. Lett. 96, 233108(2010).
[CrossRef]

H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Electromagnetic modeling of multiwalled carbon nanotubes as nano-rod electrodes for optimizing device geometry in a nanophotonic device,” IEEE Trans. Nanotechnol. 10, 547–554 (2010).
[CrossRef]

R. Rajasekharan, Q. Dai, and T. D. Wilkinson, “Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals,” Appl. Opt. 49, 2099–2104 (2010).
[CrossRef]

X. Wang, T. D. Wilkinson, M. Mann, K. B. K. Teo, and W. I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes,” Appl. Opt. 49, 3311–3315 (2010).
[CrossRef]

2009 (1)

2008 (2)

T. D. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

S.-Y. Lu and L.-C. Chien, “Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties,” Opt. Express 16, 12777–12785 (2008).

2007 (3)

2003 (3)

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

R. Escalona, “Study of axial absorption in liquids by interferometry,” J. Opt. A 5, S355 (2003).
[CrossRef]

1984 (1)

Ahmed, H.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Amaratunga, G.

Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
[CrossRef]

Amaratunga, G. A. J.

H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Electromagnetic modeling of multiwalled carbon nanotubes as nano-rod electrodes for optimizing device geometry in a nanophotonic device,” IEEE Trans. Nanotechnol. 10, 547–554 (2010).
[CrossRef]

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Bay, C.

R. Rajasekharan, C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, “ Electrically reconfigurable nanophotonic hybrid grating lens array,” Appl. Phys. Lett. 96, 233108(2010).
[CrossRef]

R. Rajesekharan, C. Bay, J. Freeman, and T. D. Wilkinson, “Analysis of an array of micro lenses using Fourier-transform method,” IET Optoelectron. 4, 210–215 (2010).
[CrossRef]

Binh, V. Thien

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Butt, H.

Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
[CrossRef]

H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Electromagnetic modeling of multiwalled carbon nanotubes as nano-rod electrodes for optimizing device geometry in a nanophotonic device,” IEEE Trans. Nanotechnol. 10, 547–554 (2010).
[CrossRef]

R. Rajasekharan, H. Butt, and T. D. Wilkinson, “Optical phase modulation using a hybrid carbon nanotube-liquid crystal nanophotonic device,” Opt. Lett. 34, 1237–1239(2009).
[CrossRef]

Castignolles, M.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Chhowalla, M.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Chien, L.-C.

Dai, Q.

Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
[CrossRef]

R. Rajesekharan, T. D. Wilkinson, P. J. W. Hands, and Q. Dai, “Nanophotonic three-dimensional microscope,” Nano Lett. 11, 2770–2773 (2011).
[CrossRef]

R. Rajasekharan, C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, “ Electrically reconfigurable nanophotonic hybrid grating lens array,” Appl. Phys. Lett. 96, 233108(2010).
[CrossRef]

R. Rajasekharan, Q. Dai, and T. D. Wilkinson, “Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals,” Appl. Opt. 49, 2099–2104 (2010).
[CrossRef]

Efron, U.

Escalona, R.

R. Escalona, “Study of axial absorption in liquids by interferometry,” J. Opt. A 5, S355 (2003).
[CrossRef]

Fan, Y. H.

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

Freeman, J.

R. Rajesekharan, C. Bay, J. Freeman, and T. D. Wilkinson, “Analysis of an array of micro lenses using Fourier-transform method,” IET Optoelectron. 4, 210–215 (2010).
[CrossRef]

R. Rajasekharan, C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, “ Electrically reconfigurable nanophotonic hybrid grating lens array,” Appl. Phys. Lett. 96, 233108(2010).
[CrossRef]

Gangloff, L.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Groening, O.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Hands, P. J.

Hands, P. J. W.

R. Rajesekharan, T. D. Wilkinson, P. J. W. Hands, and Q. Dai, “Nanophotonic three-dimensional microscope,” Nano Lett. 11, 2770–2773 (2011).
[CrossRef]

Hasko, D. G.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Hess, L. D.

Jeong, K.-U.

Jeong, S. H.

Jeong, S. J.

Kirby, A. K.

Lee, S. B.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Lee, S. H.

Lee, Y. H.

Legagneux, P.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Loiseau, A.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Love, G. D.

Lu, R.

Lu, S.-Y.

Mann, M.

Milne, W. I.

X. Wang, T. D. Wilkinson, M. Mann, K. B. K. Teo, and W. I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes,” Appl. Opt. 49, 3311–3315 (2010).
[CrossRef]

T. D. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Pirio, G.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Pribat, D.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Rajasekharan, R.

R. Rajasekharan, C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, “ Electrically reconfigurable nanophotonic hybrid grating lens array,” Appl. Phys. Lett. 96, 233108(2010).
[CrossRef]

R. Rajasekharan, Q. Dai, and T. D. Wilkinson, “Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals,” Appl. Opt. 49, 2099–2104 (2010).
[CrossRef]

H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Electromagnetic modeling of multiwalled carbon nanotubes as nano-rod electrodes for optimizing device geometry in a nanophotonic device,” IEEE Trans. Nanotechnol. 10, 547–554 (2010).
[CrossRef]

R. Rajasekharan, H. Butt, and T. D. Wilkinson, “Optical phase modulation using a hybrid carbon nanotube-liquid crystal nanophotonic device,” Opt. Lett. 34, 1237–1239(2009).
[CrossRef]

Rajesekharan, R.

Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
[CrossRef]

R. Rajesekharan, T. D. Wilkinson, P. J. W. Hands, and Q. Dai, “Nanophotonic three-dimensional microscope,” Nano Lett. 11, 2770–2773 (2011).
[CrossRef]

R. Rajesekharan, C. Bay, J. Freeman, and T. D. Wilkinson, “Analysis of an array of micro lenses using Fourier-transform method,” IET Optoelectron. 4, 210–215 (2010).
[CrossRef]

Ren, H.

H. Ren and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328—11335 (2007).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

Schnell, J. P.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Semet, V.

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Srivastava, A. K.

Sureshkumar, P.

Teo, K. B. K.

X. Wang, T. D. Wilkinson, M. Mann, K. B. K. Teo, and W. I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes,” Appl. Opt. 49, 3311–3315 (2010).
[CrossRef]

T. D. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

Wang, X.

Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
[CrossRef]

X. Wang, T. D. Wilkinson, M. Mann, K. B. K. Teo, and W. I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes,” Appl. Opt. 49, 3311–3315 (2010).
[CrossRef]

T. D. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

Wilkinson, T. D.

Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
[CrossRef]

R. Rajesekharan, T. D. Wilkinson, P. J. W. Hands, and Q. Dai, “Nanophotonic three-dimensional microscope,” Nano Lett. 11, 2770–2773 (2011).
[CrossRef]

R. Rajasekharan, C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, “ Electrically reconfigurable nanophotonic hybrid grating lens array,” Appl. Phys. Lett. 96, 233108(2010).
[CrossRef]

X. Wang, T. D. Wilkinson, M. Mann, K. B. K. Teo, and W. I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes,” Appl. Opt. 49, 3311–3315 (2010).
[CrossRef]

R. Rajesekharan, C. Bay, J. Freeman, and T. D. Wilkinson, “Analysis of an array of micro lenses using Fourier-transform method,” IET Optoelectron. 4, 210–215 (2010).
[CrossRef]

R. Rajasekharan, Q. Dai, and T. D. Wilkinson, “Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals,” Appl. Opt. 49, 2099–2104 (2010).
[CrossRef]

H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Electromagnetic modeling of multiwalled carbon nanotubes as nano-rod electrodes for optimizing device geometry in a nanophotonic device,” IEEE Trans. Nanotechnol. 10, 547–554 (2010).
[CrossRef]

R. Rajasekharan, H. Butt, and T. D. Wilkinson, “Optical phase modulation using a hybrid carbon nanotube-liquid crystal nanophotonic device,” Opt. Lett. 34, 1237–1239(2009).
[CrossRef]

T. D. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Won, K.

Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
[CrossRef]

Wu, S. T.

H. Ren and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328—11335 (2007).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

Wu, S.-T.

Adv. Mater. (1)

T. D. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

R. Rajasekharan, C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, “ Electrically reconfigurable nanophotonic hybrid grating lens array,” Appl. Phys. Lett. 96, 233108(2010).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

Diamond Rel. Mater. (1)

W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Electromagnetic modeling of multiwalled carbon nanotubes as nano-rod electrodes for optimizing device geometry in a nanophotonic device,” IEEE Trans. Nanotechnol. 10, 547–554 (2010).
[CrossRef]

IET Optoelectron. (1)

R. Rajesekharan, C. Bay, J. Freeman, and T. D. Wilkinson, “Analysis of an array of micro lenses using Fourier-transform method,” IET Optoelectron. 4, 210–215 (2010).
[CrossRef]

J. Opt. A (1)

R. Escalona, “Study of axial absorption in liquids by interferometry,” J. Opt. A 5, S355 (2003).
[CrossRef]

Nano Lett. (1)

R. Rajesekharan, T. D. Wilkinson, P. J. W. Hands, and Q. Dai, “Nanophotonic three-dimensional microscope,” Nano Lett. 11, 2770–2773 (2011).
[CrossRef]

Nanotechnology (1)

Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM image of nanotube electrodes on silicon substrate, in groups of (a) one, (b) three, (c) four, and (d) five.

Fig. 2.
Fig. 2.

Interference fringes at different voltages from one-nanotube device: (a) 0  V rms, (b) 1.3  V rms, and (c) 3.5  V rms. (d) Unwrapped phase at 1.3  V rms (e) Refractive-index profile across one lenslet.

Fig. 3.
Fig. 3.

Interference fringes at different voltages from three-nanotube device: (a) 0  V rms, (b) 1.3  V rms, and (c) 3.5  V rms. (d) Unwrapped phase of a three-nanotube lenslet at 1.3  V rms. (e) Refractive-index profile across one lenslet.

Fig. 4.
Fig. 4.

Interference fringes at different voltages from four-nanotube device: (a) 0  V rms, (b) 1.3  V rms, and (c) 3.5  V rms. (d) Unwrapped phase at 1.3  V rms (e) Refractive-index profile across one lenslet.

Fig. 5.
Fig. 5.

Interference fringes at different voltages from the five-nanotube device: (a) 0  V rms, (b) 1.3  V rms, and (c) 3.5  V rms. (d) Unwrapped phase at 1.3  V rms. (e) Refractive-index profile across one lenslet.

Fig. 6.
Fig. 6.

Spectra of Zernike coefficients for (a) one, (b) three, (c) four, and (d) five-nanotube devices.

Metrics