Abstract

The film thickness of a hanging soap bubble has been studied along its gravitational orientation after its birth and before its bursting using large lateral shearing displacement interferometry, with a theoretical error of less than 0.325λ. The results show that the spatial distribution of the film thickness could be approximated with an exponential model in all captured frames, especially in the lower half of the soap bubble. Before its bursting, a special zone, where the water layer has drained out while the surfactant solution layer remains, will occur at the top of the soap bubble and gradually expand toward the bottom. Moreover, the simulated fringe patterns based on the computed values match well with the experimentally observed ones.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sha, Z. Li, Y. Wang, and J. Huang, “The Marangoni convection induced by acetone desorption from the falling soap film,” Heat Mass Transf. 48, 749–755 (2012).
    [CrossRef]
  2. S. Stefanus, S. Steers, and W. I. Goldburg, “Direct measurement of turbulent shear,” Phys. D 240, 1873–1876 (2011).
    [CrossRef]
  3. R. Shirsavar, A. Amjadi, A. Tonddast-Navaei, and M. R. Ejtehadi, “Electrically rotating suspended films of polar liquids,” Exp. Fluids 50, 419–428 (2011).
    [CrossRef]
  4. L. Saulnier, F. Restagno, J. Delacotte, D. Langevin, and E. Rio, “What is the mechanism of soap film entrainment?,” Langmuir 27, 13406–13409 (2011).
    [CrossRef]
  5. J. Niu and D. L. Hu, “Drag reduction of a hairy disk,” Phys. Fluids 23, 101701 (2011).
    [CrossRef]
  6. K. Kostarev, A. Viviani, and A. Zuev, “Thermal and concentrational maragoni convection at liquid/air bubble interface,” J. Appl. Mech. 73, 66–71 (2006).
    [CrossRef]
  7. M. A. Fortes, P. I. C. Teixeira, and A. M. Deus, “The shape of soap films and Plateau borders,” J. Phys. Condens. Matter 19, 246106 (2007).
    [CrossRef]
  8. F. T. Muijres and D. Lentink, “Wake visualization of a heaving and pitching foil in a soap film,” Exp. Fluids 43, 665–673 (2007).
    [CrossRef]
  9. E. A. Van Nierop, B. Scheid, and H. A. Stone, “On the thickness of soap films: an alternative to Frankel’s law,” J. Fluid Mech. 602, 119–127 (2008).
    [CrossRef]
  10. D. C. B. Braide-Azikiwe, K. B. Holt, D. E. Williams, and D. J. Caruana, “Soap film electrochemistry,” Electrochem. Commun. 11, 1226–1229 (2009).
    [CrossRef]
  11. V. Prasad and E. R. Weeks, “Flow fields in soap films: relating viscosity and film thickness,” Phys. Rev. E 80, 026309 (2009).
    [CrossRef]
  12. T. S. Yang, C. Y. Wen, and C. Y. Lin, “Interpretation of color fringes in flowing soap films,” Exp. Thermal Fluid Sci. 25, 141–149 (2001).
    [CrossRef]
  13. N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
    [CrossRef]
  14. M. Daily, “Proof of the double bubble curvature conjecture,” J. Geom. Anal. 17, 75–85 (2007).
    [CrossRef]
  15. P. G. De Gennes, ““Young” soap films,” Langmuir 17, 2416–2419 (2001).
    [CrossRef]
  16. V. Prasad and E. R. Weeks, “Two-dimensional to three-dimensional transition in soap films demonstrated by microrheology,” Phys. Rev. Lett. 102, 178302 (2009).
    [CrossRef]
  17. Y. Sha, Z. Li, G. Jiang, S. Tu, Z. Xiao, and L. Ye, “Observation on Marangoni convection induced by desorption in falling soap film,” CIESC J. 61, 1123–1126 (2010).
  18. M. J. Huang, C. Y. Wen, I. C. Lee, and C. H. Tsai, “Air-damping effects on developing velocity profiles in flowing soap films,” Phys. Fluids 16, 3975–3982 (2004).
    [CrossRef]
  19. H. Lhuissier and E. Villermaux, “Soap films burst like flapping flags,” Phys. Rev. Lett. 103, 054501 (2009).
    [CrossRef]
  20. F. Muller, C. Bohley, and R. Stannarius, “Second sound in bursting freely suspended smectic-A films,” Phys. Rev. E 79, 046315 (2009).
    [CrossRef]
  21. N. Bremond and E. Villermaux, “Bursting thin liquid films,” J. Fluid Mech. 524, 121–130 (2005).
    [CrossRef]
  22. R. Stannarius and F. Muller, “Comparison of the rupture dynamics of smectic bubbles and soap bubbles,” Liq. Cryst. 36, 133–145 (2009).
    [CrossRef]
  23. V. Sebag, A. E. Roth, and D. J. Durian, “Final bubble lengths for aqueous foam coarsened in a horizontal cylinder,” Philos. Mag. 91(34), 4357–4366 (2011).
    [CrossRef]
  24. D. Jaszkowski and J. Rzeszut, “Interference colours of soap bubbles,” Vis. Comput. 19, 252–270 (2003).
    [CrossRef]
  25. J. Zhang, L. X. Wu, and N. Rashidnia, “Thermal radiation and thickness fluctuations in freely suspended liquid films,” Phys. Fluids 18, 85110 (2006).
    [CrossRef]
  26. D. Georgiev and P. Vorobieff, “The slowest soap-film tunnel in the Southwest,” Rev. Sci. Instrum. 73, 1177–1184(2002).
    [CrossRef]
  27. P. D. T. Huibers and D. O. Shah, “Multispectral determination of soap film thickness,” Langmuir 13, 5995–5998 (1997).
    [CrossRef]
  28. X. Wang and H. Qiu, “Fringe probing of gas–liquid interfacial film in a microcapillary tube,” Appl. Opt. 44, 4648–4653 (2005).
    [CrossRef]
  29. R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
    [CrossRef]
  30. G. Zhou, F. Guo, and H. Li, “Dichromatic interferogram of lubricant film measurement,” Acta Opt. Sinica 32, 0312006 (2012).
    [CrossRef]
  31. G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap film thicknesses,” Appl. Phys. Lett. 88, 234104(2006).
    [CrossRef]
  32. A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng. 30, 28–36 (2009).
    [CrossRef]
  33. O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett. 88, 194101 (2002).
    [CrossRef]
  34. M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun. 229, 29–37 (2004).
    [CrossRef]
  35. W. Lv, H.-C. Zhou, and J.-R. Zhu, “Fringe analysis for flame in real time lateral shearing interferometric system with large shearing distance,” J. Eng. Thermophys. 31, 717–719 (2010).
  36. W. Lv, H.-C. Zhou, and J.-R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011).
    [CrossRef]
  37. W. Lv, H.-C. Zhou, and J.-R. Zhu, “Thickness measurement of full field soap bubble film in real time based on large lateral shearing displacement interferometry,” AIP Conf. Proc. 1428, 209–216 (2012).
    [CrossRef]
  38. M. Bass, Handbook of Optics, Third Edition, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments (McGraw-Hill, 2010).

2012 (3)

Y. Sha, Z. Li, Y. Wang, and J. Huang, “The Marangoni convection induced by acetone desorption from the falling soap film,” Heat Mass Transf. 48, 749–755 (2012).
[CrossRef]

G. Zhou, F. Guo, and H. Li, “Dichromatic interferogram of lubricant film measurement,” Acta Opt. Sinica 32, 0312006 (2012).
[CrossRef]

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Thickness measurement of full field soap bubble film in real time based on large lateral shearing displacement interferometry,” AIP Conf. Proc. 1428, 209–216 (2012).
[CrossRef]

2011 (7)

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011).
[CrossRef]

V. Sebag, A. E. Roth, and D. J. Durian, “Final bubble lengths for aqueous foam coarsened in a horizontal cylinder,” Philos. Mag. 91(34), 4357–4366 (2011).
[CrossRef]

S. Stefanus, S. Steers, and W. I. Goldburg, “Direct measurement of turbulent shear,” Phys. D 240, 1873–1876 (2011).
[CrossRef]

R. Shirsavar, A. Amjadi, A. Tonddast-Navaei, and M. R. Ejtehadi, “Electrically rotating suspended films of polar liquids,” Exp. Fluids 50, 419–428 (2011).
[CrossRef]

L. Saulnier, F. Restagno, J. Delacotte, D. Langevin, and E. Rio, “What is the mechanism of soap film entrainment?,” Langmuir 27, 13406–13409 (2011).
[CrossRef]

J. Niu and D. L. Hu, “Drag reduction of a hairy disk,” Phys. Fluids 23, 101701 (2011).
[CrossRef]

N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
[CrossRef]

2010 (3)

Y. Sha, Z. Li, G. Jiang, S. Tu, Z. Xiao, and L. Ye, “Observation on Marangoni convection induced by desorption in falling soap film,” CIESC J. 61, 1123–1126 (2010).

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Fringe analysis for flame in real time lateral shearing interferometric system with large shearing distance,” J. Eng. Thermophys. 31, 717–719 (2010).

R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
[CrossRef]

2009 (7)

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng. 30, 28–36 (2009).
[CrossRef]

R. Stannarius and F. Muller, “Comparison of the rupture dynamics of smectic bubbles and soap bubbles,” Liq. Cryst. 36, 133–145 (2009).
[CrossRef]

H. Lhuissier and E. Villermaux, “Soap films burst like flapping flags,” Phys. Rev. Lett. 103, 054501 (2009).
[CrossRef]

F. Muller, C. Bohley, and R. Stannarius, “Second sound in bursting freely suspended smectic-A films,” Phys. Rev. E 79, 046315 (2009).
[CrossRef]

V. Prasad and E. R. Weeks, “Two-dimensional to three-dimensional transition in soap films demonstrated by microrheology,” Phys. Rev. Lett. 102, 178302 (2009).
[CrossRef]

D. C. B. Braide-Azikiwe, K. B. Holt, D. E. Williams, and D. J. Caruana, “Soap film electrochemistry,” Electrochem. Commun. 11, 1226–1229 (2009).
[CrossRef]

V. Prasad and E. R. Weeks, “Flow fields in soap films: relating viscosity and film thickness,” Phys. Rev. E 80, 026309 (2009).
[CrossRef]

2008 (1)

E. A. Van Nierop, B. Scheid, and H. A. Stone, “On the thickness of soap films: an alternative to Frankel’s law,” J. Fluid Mech. 602, 119–127 (2008).
[CrossRef]

2007 (3)

M. Daily, “Proof of the double bubble curvature conjecture,” J. Geom. Anal. 17, 75–85 (2007).
[CrossRef]

M. A. Fortes, P. I. C. Teixeira, and A. M. Deus, “The shape of soap films and Plateau borders,” J. Phys. Condens. Matter 19, 246106 (2007).
[CrossRef]

F. T. Muijres and D. Lentink, “Wake visualization of a heaving and pitching foil in a soap film,” Exp. Fluids 43, 665–673 (2007).
[CrossRef]

2006 (3)

K. Kostarev, A. Viviani, and A. Zuev, “Thermal and concentrational maragoni convection at liquid/air bubble interface,” J. Appl. Mech. 73, 66–71 (2006).
[CrossRef]

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap film thicknesses,” Appl. Phys. Lett. 88, 234104(2006).
[CrossRef]

J. Zhang, L. X. Wu, and N. Rashidnia, “Thermal radiation and thickness fluctuations in freely suspended liquid films,” Phys. Fluids 18, 85110 (2006).
[CrossRef]

2005 (2)

X. Wang and H. Qiu, “Fringe probing of gas–liquid interfacial film in a microcapillary tube,” Appl. Opt. 44, 4648–4653 (2005).
[CrossRef]

N. Bremond and E. Villermaux, “Bursting thin liquid films,” J. Fluid Mech. 524, 121–130 (2005).
[CrossRef]

2004 (2)

M. J. Huang, C. Y. Wen, I. C. Lee, and C. H. Tsai, “Air-damping effects on developing velocity profiles in flowing soap films,” Phys. Fluids 16, 3975–3982 (2004).
[CrossRef]

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun. 229, 29–37 (2004).
[CrossRef]

2003 (1)

D. Jaszkowski and J. Rzeszut, “Interference colours of soap bubbles,” Vis. Comput. 19, 252–270 (2003).
[CrossRef]

2002 (2)

D. Georgiev and P. Vorobieff, “The slowest soap-film tunnel in the Southwest,” Rev. Sci. Instrum. 73, 1177–1184(2002).
[CrossRef]

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett. 88, 194101 (2002).
[CrossRef]

2001 (2)

P. G. De Gennes, ““Young” soap films,” Langmuir 17, 2416–2419 (2001).
[CrossRef]

T. S. Yang, C. Y. Wen, and C. Y. Lin, “Interpretation of color fringes in flowing soap films,” Exp. Thermal Fluid Sci. 25, 141–149 (2001).
[CrossRef]

1997 (1)

P. D. T. Huibers and D. O. Shah, “Multispectral determination of soap film thickness,” Langmuir 13, 5995–5998 (1997).
[CrossRef]

Amarouchene, Y.

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett. 88, 194101 (2002).
[CrossRef]

Amjadi, A.

R. Shirsavar, A. Amjadi, A. Tonddast-Navaei, and M. R. Ejtehadi, “Electrically rotating suspended films of polar liquids,” Exp. Fluids 50, 419–428 (2011).
[CrossRef]

Angel, L.

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun. 229, 29–37 (2004).
[CrossRef]

Bass, M.

M. Bass, Handbook of Optics, Third Edition, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments (McGraw-Hill, 2010).

Bohley, C.

F. Muller, C. Bohley, and R. Stannarius, “Second sound in bursting freely suspended smectic-A films,” Phys. Rev. E 79, 046315 (2009).
[CrossRef]

Bolognini, N.

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun. 229, 29–37 (2004).
[CrossRef]

Boyd, R. W.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap film thicknesses,” Appl. Phys. Lett. 88, 234104(2006).
[CrossRef]

Braide-Azikiwe, D. C. B.

D. C. B. Braide-Azikiwe, K. B. Holt, D. E. Williams, and D. J. Caruana, “Soap film electrochemistry,” Electrochem. Commun. 11, 1226–1229 (2009).
[CrossRef]

Bremond, N.

N. Bremond and E. Villermaux, “Bursting thin liquid films,” J. Fluid Mech. 524, 121–130 (2005).
[CrossRef]

Caruana, D. J.

D. C. B. Braide-Azikiwe, K. B. Holt, D. E. Williams, and D. J. Caruana, “Soap film electrochemistry,” Electrochem. Commun. 11, 1226–1229 (2009).
[CrossRef]

Chauvat, D.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap film thicknesses,” Appl. Phys. Lett. 88, 234104(2006).
[CrossRef]

Daily, M.

M. Daily, “Proof of the double bubble curvature conjecture,” J. Geom. Anal. 17, 75–85 (2007).
[CrossRef]

De Gennes, P. G.

P. G. De Gennes, ““Young” soap films,” Langmuir 17, 2416–2419 (2001).
[CrossRef]

Delacotte, J.

L. Saulnier, F. Restagno, J. Delacotte, D. Langevin, and E. Rio, “What is the mechanism of soap film entrainment?,” Langmuir 27, 13406–13409 (2011).
[CrossRef]

Deus, A. M.

M. A. Fortes, P. I. C. Teixeira, and A. M. Deus, “The shape of soap films and Plateau borders,” J. Phys. Condens. Matter 19, 246106 (2007).
[CrossRef]

Dorbolo, S.

N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
[CrossRef]

Durian, D. J.

V. Sebag, A. E. Roth, and D. J. Durian, “Final bubble lengths for aqueous foam coarsened in a horizontal cylinder,” Philos. Mag. 91(34), 4357–4366 (2011).
[CrossRef]

Ejtehadi, M. R.

R. Shirsavar, A. Amjadi, A. Tonddast-Navaei, and M. R. Ejtehadi, “Electrically rotating suspended films of polar liquids,” Exp. Fluids 50, 419–428 (2011).
[CrossRef]

Fortes, M. A.

M. A. Fortes, P. I. C. Teixeira, and A. M. Deus, “The shape of soap films and Plateau borders,” J. Phys. Condens. Matter 19, 246106 (2007).
[CrossRef]

Georgiev, D.

D. Georgiev and P. Vorobieff, “The slowest soap-film tunnel in the Southwest,” Rev. Sci. Instrum. 73, 1177–1184(2002).
[CrossRef]

Goldburg, W. I.

S. Stefanus, S. Steers, and W. I. Goldburg, “Direct measurement of turbulent shear,” Phys. D 240, 1873–1876 (2011).
[CrossRef]

Greffier, O.

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett. 88, 194101 (2002).
[CrossRef]

Guo, F.

G. Zhou, F. Guo, and H. Li, “Dichromatic interferogram of lubricant film measurement,” Acta Opt. Sinica 32, 0312006 (2012).
[CrossRef]

Hashimoto, C.

R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
[CrossRef]

Hidema, R.

R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
[CrossRef]

Holt, K. B.

D. C. B. Braide-Azikiwe, K. B. Holt, D. E. Williams, and D. J. Caruana, “Soap film electrochemistry,” Electrochem. Commun. 11, 1226–1229 (2009).
[CrossRef]

Hu, D. L.

J. Niu and D. L. Hu, “Drag reduction of a hairy disk,” Phys. Fluids 23, 101701 (2011).
[CrossRef]

Huang, J.

Y. Sha, Z. Li, Y. Wang, and J. Huang, “The Marangoni convection induced by acetone desorption from the falling soap film,” Heat Mass Transf. 48, 749–755 (2012).
[CrossRef]

Huang, M. J.

M. J. Huang, C. Y. Wen, I. C. Lee, and C. H. Tsai, “Air-damping effects on developing velocity profiles in flowing soap films,” Phys. Fluids 16, 3975–3982 (2004).
[CrossRef]

Huibers, P. D. T.

P. D. T. Huibers and D. O. Shah, “Multispectral determination of soap film thickness,” Langmuir 13, 5995–5998 (1997).
[CrossRef]

Jaszkowski, D.

D. Jaszkowski and J. Rzeszut, “Interference colours of soap bubbles,” Vis. Comput. 19, 252–270 (2003).
[CrossRef]

Jiang, G.

Y. Sha, Z. Li, G. Jiang, S. Tu, Z. Xiao, and L. Ye, “Observation on Marangoni convection induced by desorption in falling soap film,” CIESC J. 61, 1123–1126 (2010).

Kagawa, M.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng. 30, 28–36 (2009).
[CrossRef]

Kariyasaki, A.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng. 30, 28–36 (2009).
[CrossRef]

Kellay, H.

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett. 88, 194101 (2002).
[CrossRef]

Kostarev, K.

K. Kostarev, A. Viviani, and A. Zuev, “Thermal and concentrational maragoni convection at liquid/air bubble interface,” J. Appl. Mech. 73, 66–71 (2006).
[CrossRef]

Langevin, D.

L. Saulnier, F. Restagno, J. Delacotte, D. Langevin, and E. Rio, “What is the mechanism of soap film entrainment?,” Langmuir 27, 13406–13409 (2011).
[CrossRef]

Le Floch, A.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap film thicknesses,” Appl. Phys. Lett. 88, 234104(2006).
[CrossRef]

Lee, I. C.

M. J. Huang, C. Y. Wen, I. C. Lee, and C. H. Tsai, “Air-damping effects on developing velocity profiles in flowing soap films,” Phys. Fluids 16, 3975–3982 (2004).
[CrossRef]

Lentink, D.

F. T. Muijres and D. Lentink, “Wake visualization of a heaving and pitching foil in a soap film,” Exp. Fluids 43, 665–673 (2007).
[CrossRef]

Lhuissier, H.

H. Lhuissier and E. Villermaux, “Soap films burst like flapping flags,” Phys. Rev. Lett. 103, 054501 (2009).
[CrossRef]

Li, H.

G. Zhou, F. Guo, and H. Li, “Dichromatic interferogram of lubricant film measurement,” Acta Opt. Sinica 32, 0312006 (2012).
[CrossRef]

Li, Z.

Y. Sha, Z. Li, Y. Wang, and J. Huang, “The Marangoni convection induced by acetone desorption from the falling soap film,” Heat Mass Transf. 48, 749–755 (2012).
[CrossRef]

Y. Sha, Z. Li, G. Jiang, S. Tu, Z. Xiao, and L. Ye, “Observation on Marangoni convection induced by desorption in falling soap film,” CIESC J. 61, 1123–1126 (2010).

Lin, C. Y.

T. S. Yang, C. Y. Wen, and C. Y. Lin, “Interpretation of color fringes in flowing soap films,” Exp. Thermal Fluid Sci. 25, 141–149 (2001).
[CrossRef]

Lumay, G.

N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
[CrossRef]

Lv, W.

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Thickness measurement of full field soap bubble film in real time based on large lateral shearing displacement interferometry,” AIP Conf. Proc. 1428, 209–216 (2012).
[CrossRef]

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011).
[CrossRef]

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Fringe analysis for flame in real time lateral shearing interferometric system with large shearing distance,” J. Eng. Thermophys. 31, 717–719 (2010).

Mersch, E.

N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
[CrossRef]

Morooka, S.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng. 30, 28–36 (2009).
[CrossRef]

Muijres, F. T.

F. T. Muijres and D. Lentink, “Wake visualization of a heaving and pitching foil in a soap film,” Exp. Fluids 43, 665–673 (2007).
[CrossRef]

Muller, F.

F. Muller, C. Bohley, and R. Stannarius, “Second sound in bursting freely suspended smectic-A films,” Phys. Rev. E 79, 046315 (2009).
[CrossRef]

R. Stannarius and F. Muller, “Comparison of the rupture dynamics of smectic bubbles and soap bubbles,” Liq. Cryst. 36, 133–145 (2009).
[CrossRef]

Nagashima, T.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng. 30, 28–36 (2009).
[CrossRef]

Niu, J.

J. Niu and D. L. Hu, “Drag reduction of a hairy disk,” Phys. Fluids 23, 101701 (2011).
[CrossRef]

Noirhomme, M.

N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
[CrossRef]

O’Sullivan-Hale, M. N.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap film thicknesses,” Appl. Phys. Lett. 88, 234104(2006).
[CrossRef]

Ousaka, A.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng. 30, 28–36 (2009).
[CrossRef]

Pansu, R.

R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
[CrossRef]

Prasad, V.

V. Prasad and E. R. Weeks, “Two-dimensional to three-dimensional transition in soap films demonstrated by microrheology,” Phys. Rev. Lett. 102, 178302 (2009).
[CrossRef]

V. Prasad and E. R. Weeks, “Flow fields in soap films: relating viscosity and film thickness,” Phys. Rev. E 80, 026309 (2009).
[CrossRef]

Qiu, H.

Rashidnia, N.

J. Zhang, L. X. Wu, and N. Rashidnia, “Thermal radiation and thickness fluctuations in freely suspended liquid films,” Phys. Fluids 18, 85110 (2006).
[CrossRef]

Restagno, F.

L. Saulnier, F. Restagno, J. Delacotte, D. Langevin, and E. Rio, “What is the mechanism of soap film entrainment?,” Langmuir 27, 13406–13409 (2011).
[CrossRef]

Rio, E.

L. Saulnier, F. Restagno, J. Delacotte, D. Langevin, and E. Rio, “What is the mechanism of soap film entrainment?,” Langmuir 27, 13406–13409 (2011).
[CrossRef]

Ropars, G.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap film thicknesses,” Appl. Phys. Lett. 88, 234104(2006).
[CrossRef]

Roth, A. E.

V. Sebag, A. E. Roth, and D. J. Durian, “Final bubble lengths for aqueous foam coarsened in a horizontal cylinder,” Philos. Mag. 91(34), 4357–4366 (2011).
[CrossRef]

Rzeszut, J.

D. Jaszkowski and J. Rzeszut, “Interference colours of soap bubbles,” Vis. Comput. 19, 252–270 (2003).
[CrossRef]

Sagarzazu, G.

R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
[CrossRef]

Saulnier, L.

L. Saulnier, F. Restagno, J. Delacotte, D. Langevin, and E. Rio, “What is the mechanism of soap film entrainment?,” Langmuir 27, 13406–13409 (2011).
[CrossRef]

Scheid, B.

E. A. Van Nierop, B. Scheid, and H. A. Stone, “On the thickness of soap films: an alternative to Frankel’s law,” J. Fluid Mech. 602, 119–127 (2008).
[CrossRef]

Schockmel, J.

N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
[CrossRef]

Sebag, V.

V. Sebag, A. E. Roth, and D. J. Durian, “Final bubble lengths for aqueous foam coarsened in a horizontal cylinder,” Philos. Mag. 91(34), 4357–4366 (2011).
[CrossRef]

Sha, Y.

Y. Sha, Z. Li, Y. Wang, and J. Huang, “The Marangoni convection induced by acetone desorption from the falling soap film,” Heat Mass Transf. 48, 749–755 (2012).
[CrossRef]

Y. Sha, Z. Li, G. Jiang, S. Tu, Z. Xiao, and L. Ye, “Observation on Marangoni convection induced by desorption in falling soap film,” CIESC J. 61, 1123–1126 (2010).

Shah, D. O.

P. D. T. Huibers and D. O. Shah, “Multispectral determination of soap film thickness,” Langmuir 13, 5995–5998 (1997).
[CrossRef]

Shirsavar, R.

R. Shirsavar, A. Amjadi, A. Tonddast-Navaei, and M. R. Ejtehadi, “Electrically rotating suspended films of polar liquids,” Exp. Fluids 50, 419–428 (2011).
[CrossRef]

Shoji, M.

R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
[CrossRef]

Stannarius, R.

R. Stannarius and F. Muller, “Comparison of the rupture dynamics of smectic bubbles and soap bubbles,” Liq. Cryst. 36, 133–145 (2009).
[CrossRef]

F. Muller, C. Bohley, and R. Stannarius, “Second sound in bursting freely suspended smectic-A films,” Phys. Rev. E 79, 046315 (2009).
[CrossRef]

Steers, S.

S. Stefanus, S. Steers, and W. I. Goldburg, “Direct measurement of turbulent shear,” Phys. D 240, 1873–1876 (2011).
[CrossRef]

Stefanus, S.

S. Stefanus, S. Steers, and W. I. Goldburg, “Direct measurement of turbulent shear,” Phys. D 240, 1873–1876 (2011).
[CrossRef]

Stone, H. A.

E. A. Van Nierop, B. Scheid, and H. A. Stone, “On the thickness of soap films: an alternative to Frankel’s law,” J. Fluid Mech. 602, 119–127 (2008).
[CrossRef]

Tebaldi, M.

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun. 229, 29–37 (2004).
[CrossRef]

Teixeira, P. I. C.

M. A. Fortes, P. I. C. Teixeira, and A. M. Deus, “The shape of soap films and Plateau borders,” J. Phys. Condens. Matter 19, 246106 (2007).
[CrossRef]

Terwagne, D.

N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
[CrossRef]

Tonddast-Navaei, A.

R. Shirsavar, A. Amjadi, A. Tonddast-Navaei, and M. R. Ejtehadi, “Electrically rotating suspended films of polar liquids,” Exp. Fluids 50, 419–428 (2011).
[CrossRef]

Trivi, M.

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun. 229, 29–37 (2004).
[CrossRef]

Tsai, C. H.

M. J. Huang, C. Y. Wen, I. C. Lee, and C. H. Tsai, “Air-damping effects on developing velocity profiles in flowing soap films,” Phys. Fluids 16, 3975–3982 (2004).
[CrossRef]

Tu, S.

Y. Sha, Z. Li, G. Jiang, S. Tu, Z. Xiao, and L. Ye, “Observation on Marangoni convection induced by desorption in falling soap film,” CIESC J. 61, 1123–1126 (2010).

Ushiki, H.

R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
[CrossRef]

Van Nierop, E. A.

E. A. Van Nierop, B. Scheid, and H. A. Stone, “On the thickness of soap films: an alternative to Frankel’s law,” J. Fluid Mech. 602, 119–127 (2008).
[CrossRef]

Vandewalle, N.

N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
[CrossRef]

Villermaux, E.

H. Lhuissier and E. Villermaux, “Soap films burst like flapping flags,” Phys. Rev. Lett. 103, 054501 (2009).
[CrossRef]

N. Bremond and E. Villermaux, “Bursting thin liquid films,” J. Fluid Mech. 524, 121–130 (2005).
[CrossRef]

Viviani, A.

K. Kostarev, A. Viviani, and A. Zuev, “Thermal and concentrational maragoni convection at liquid/air bubble interface,” J. Appl. Mech. 73, 66–71 (2006).
[CrossRef]

Vorobieff, P.

D. Georgiev and P. Vorobieff, “The slowest soap-film tunnel in the Southwest,” Rev. Sci. Instrum. 73, 1177–1184(2002).
[CrossRef]

Wang, X.

Wang, Y.

Y. Sha, Z. Li, Y. Wang, and J. Huang, “The Marangoni convection induced by acetone desorption from the falling soap film,” Heat Mass Transf. 48, 749–755 (2012).
[CrossRef]

Weeks, E. R.

V. Prasad and E. R. Weeks, “Flow fields in soap films: relating viscosity and film thickness,” Phys. Rev. E 80, 026309 (2009).
[CrossRef]

V. Prasad and E. R. Weeks, “Two-dimensional to three-dimensional transition in soap films demonstrated by microrheology,” Phys. Rev. Lett. 102, 178302 (2009).
[CrossRef]

Wen, C. Y.

M. J. Huang, C. Y. Wen, I. C. Lee, and C. H. Tsai, “Air-damping effects on developing velocity profiles in flowing soap films,” Phys. Fluids 16, 3975–3982 (2004).
[CrossRef]

T. S. Yang, C. Y. Wen, and C. Y. Lin, “Interpretation of color fringes in flowing soap films,” Exp. Thermal Fluid Sci. 25, 141–149 (2001).
[CrossRef]

Williams, D. E.

D. C. B. Braide-Azikiwe, K. B. Holt, D. E. Williams, and D. J. Caruana, “Soap film electrochemistry,” Electrochem. Commun. 11, 1226–1229 (2009).
[CrossRef]

Wu, L. X.

J. Zhang, L. X. Wu, and N. Rashidnia, “Thermal radiation and thickness fluctuations in freely suspended liquid films,” Phys. Fluids 18, 85110 (2006).
[CrossRef]

Xiao, Z.

Y. Sha, Z. Li, G. Jiang, S. Tu, Z. Xiao, and L. Ye, “Observation on Marangoni convection induced by desorption in falling soap film,” CIESC J. 61, 1123–1126 (2010).

Yamasaki, Y.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng. 30, 28–36 (2009).
[CrossRef]

Yang, T. S.

T. S. Yang, C. Y. Wen, and C. Y. Lin, “Interpretation of color fringes in flowing soap films,” Exp. Thermal Fluid Sci. 25, 141–149 (2001).
[CrossRef]

Yatabe, Z.

R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
[CrossRef]

Ye, L.

Y. Sha, Z. Li, G. Jiang, S. Tu, Z. Xiao, and L. Ye, “Observation on Marangoni convection induced by desorption in falling soap film,” CIESC J. 61, 1123–1126 (2010).

Zhang, J.

J. Zhang, L. X. Wu, and N. Rashidnia, “Thermal radiation and thickness fluctuations in freely suspended liquid films,” Phys. Fluids 18, 85110 (2006).
[CrossRef]

Zhou, G.

G. Zhou, F. Guo, and H. Li, “Dichromatic interferogram of lubricant film measurement,” Acta Opt. Sinica 32, 0312006 (2012).
[CrossRef]

Zhou, H.-C.

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Thickness measurement of full field soap bubble film in real time based on large lateral shearing displacement interferometry,” AIP Conf. Proc. 1428, 209–216 (2012).
[CrossRef]

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011).
[CrossRef]

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Fringe analysis for flame in real time lateral shearing interferometric system with large shearing distance,” J. Eng. Thermophys. 31, 717–719 (2010).

Zhu, J.-R.

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Thickness measurement of full field soap bubble film in real time based on large lateral shearing displacement interferometry,” AIP Conf. Proc. 1428, 209–216 (2012).
[CrossRef]

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011).
[CrossRef]

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Fringe analysis for flame in real time lateral shearing interferometric system with large shearing distance,” J. Eng. Thermophys. 31, 717–719 (2010).

Zuev, A.

K. Kostarev, A. Viviani, and A. Zuev, “Thermal and concentrational maragoni convection at liquid/air bubble interface,” J. Appl. Mech. 73, 66–71 (2006).
[CrossRef]

Acta Opt. Sinica (1)

G. Zhou, F. Guo, and H. Li, “Dichromatic interferogram of lubricant film measurement,” Acta Opt. Sinica 32, 0312006 (2012).
[CrossRef]

AIP Conf. Proc. (1)

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Thickness measurement of full field soap bubble film in real time based on large lateral shearing displacement interferometry,” AIP Conf. Proc. 1428, 209–216 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap film thicknesses,” Appl. Phys. Lett. 88, 234104(2006).
[CrossRef]

CIESC J. (1)

Y. Sha, Z. Li, G. Jiang, S. Tu, Z. Xiao, and L. Ye, “Observation on Marangoni convection induced by desorption in falling soap film,” CIESC J. 61, 1123–1126 (2010).

Electrochem. Commun. (1)

D. C. B. Braide-Azikiwe, K. B. Holt, D. E. Williams, and D. J. Caruana, “Soap film electrochemistry,” Electrochem. Commun. 11, 1226–1229 (2009).
[CrossRef]

Exp. Fluids (3)

R. Shirsavar, A. Amjadi, A. Tonddast-Navaei, and M. R. Ejtehadi, “Electrically rotating suspended films of polar liquids,” Exp. Fluids 50, 419–428 (2011).
[CrossRef]

F. T. Muijres and D. Lentink, “Wake visualization of a heaving and pitching foil in a soap film,” Exp. Fluids 43, 665–673 (2007).
[CrossRef]

R. Hidema, Z. Yatabe, M. Shoji, C. Hashimoto, R. Pansu, G. Sagarzazu, and H. Ushiki, “Image analysis of thickness in flowing soap films. I: effects of polymer,” Exp. Fluids 49, 725–732 (2010).
[CrossRef]

Exp. Thermal Fluid Sci. (1)

T. S. Yang, C. Y. Wen, and C. Y. Lin, “Interpretation of color fringes in flowing soap films,” Exp. Thermal Fluid Sci. 25, 141–149 (2001).
[CrossRef]

Heat Mass Transf. (1)

Y. Sha, Z. Li, Y. Wang, and J. Huang, “The Marangoni convection induced by acetone desorption from the falling soap film,” Heat Mass Transf. 48, 749–755 (2012).
[CrossRef]

Heat Transf. Eng. (1)

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng. 30, 28–36 (2009).
[CrossRef]

J. Appl. Mech. (1)

K. Kostarev, A. Viviani, and A. Zuev, “Thermal and concentrational maragoni convection at liquid/air bubble interface,” J. Appl. Mech. 73, 66–71 (2006).
[CrossRef]

J. Eng. Thermophys. (1)

W. Lv, H.-C. Zhou, and J.-R. Zhu, “Fringe analysis for flame in real time lateral shearing interferometric system with large shearing distance,” J. Eng. Thermophys. 31, 717–719 (2010).

J. Fluid Mech. (2)

N. Bremond and E. Villermaux, “Bursting thin liquid films,” J. Fluid Mech. 524, 121–130 (2005).
[CrossRef]

E. A. Van Nierop, B. Scheid, and H. A. Stone, “On the thickness of soap films: an alternative to Frankel’s law,” J. Fluid Mech. 602, 119–127 (2008).
[CrossRef]

J. Geom. Anal. (1)

M. Daily, “Proof of the double bubble curvature conjecture,” J. Geom. Anal. 17, 75–85 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

M. A. Fortes, P. I. C. Teixeira, and A. M. Deus, “The shape of soap films and Plateau borders,” J. Phys. Condens. Matter 19, 246106 (2007).
[CrossRef]

Langmuir (3)

L. Saulnier, F. Restagno, J. Delacotte, D. Langevin, and E. Rio, “What is the mechanism of soap film entrainment?,” Langmuir 27, 13406–13409 (2011).
[CrossRef]

P. G. De Gennes, ““Young” soap films,” Langmuir 17, 2416–2419 (2001).
[CrossRef]

P. D. T. Huibers and D. O. Shah, “Multispectral determination of soap film thickness,” Langmuir 13, 5995–5998 (1997).
[CrossRef]

Liq. Cryst. (1)

R. Stannarius and F. Muller, “Comparison of the rupture dynamics of smectic bubbles and soap bubbles,” Liq. Cryst. 36, 133–145 (2009).
[CrossRef]

Opt. Commun. (1)

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun. 229, 29–37 (2004).
[CrossRef]

Philos. Mag. (1)

V. Sebag, A. E. Roth, and D. J. Durian, “Final bubble lengths for aqueous foam coarsened in a horizontal cylinder,” Philos. Mag. 91(34), 4357–4366 (2011).
[CrossRef]

Phys. D (1)

S. Stefanus, S. Steers, and W. I. Goldburg, “Direct measurement of turbulent shear,” Phys. D 240, 1873–1876 (2011).
[CrossRef]

Phys. Fluids (3)

J. Niu and D. L. Hu, “Drag reduction of a hairy disk,” Phys. Fluids 23, 101701 (2011).
[CrossRef]

M. J. Huang, C. Y. Wen, I. C. Lee, and C. H. Tsai, “Air-damping effects on developing velocity profiles in flowing soap films,” Phys. Fluids 16, 3975–3982 (2004).
[CrossRef]

J. Zhang, L. X. Wu, and N. Rashidnia, “Thermal radiation and thickness fluctuations in freely suspended liquid films,” Phys. Fluids 18, 85110 (2006).
[CrossRef]

Phys. Rev. E (3)

F. Muller, C. Bohley, and R. Stannarius, “Second sound in bursting freely suspended smectic-A films,” Phys. Rev. E 79, 046315 (2009).
[CrossRef]

N. Vandewalle, M. Noirhomme, J. Schockmel, E. Mersch, G. Lumay, D. Terwagne, and S. Dorbolo, “Hysteretic behavior in three-dimensional soap film rearrangements,” Phys. Rev. E 83, 021403 (2011).
[CrossRef]

V. Prasad and E. R. Weeks, “Flow fields in soap films: relating viscosity and film thickness,” Phys. Rev. E 80, 026309 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

H. Lhuissier and E. Villermaux, “Soap films burst like flapping flags,” Phys. Rev. Lett. 103, 054501 (2009).
[CrossRef]

V. Prasad and E. R. Weeks, “Two-dimensional to three-dimensional transition in soap films demonstrated by microrheology,” Phys. Rev. Lett. 102, 178302 (2009).
[CrossRef]

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett. 88, 194101 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

D. Georgiev and P. Vorobieff, “The slowest soap-film tunnel in the Southwest,” Rev. Sci. Instrum. 73, 1177–1184(2002).
[CrossRef]

Vis. Comput. (1)

D. Jaszkowski and J. Rzeszut, “Interference colours of soap bubbles,” Vis. Comput. 19, 252–270 (2003).
[CrossRef]

Other (1)

M. Bass, Handbook of Optics, Third Edition, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments (McGraw-Hill, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Ellipsoid structure of the test soap bubble.

Fig. 2.
Fig. 2.

Relationships between α, β, and η.

Fig. 3.
Fig. 3.

Schematic diagram of the large lateral shearing displacement interferometric system.

Fig. 4.
Fig. 4.

Frames selected from a series of fringe patterns of the test soap bubble.

Fig. 5.
Fig. 5.

Tentative view of the absolute fringe order along the horizontal axis of the soap bubble in frame No. 37, which (a) shows the absolute fringe order along the soap bubble’s horizontal axis and (b) shows the computed film thickness distributions along the horizontal axis with a series of even plus order.

Fig. 6.
Fig. 6.

Absolute fringe orders along the vertical axis of the soap bubble in frames No. 37, No. 13, and No. 1.

Fig. 7.
Fig. 7.

Part of frame No. 1, in which two kinds of data points used in computation are marked with blue and yellow circles.

Fig. 8.
Fig. 8.

Film thickness distribution in space and time.

Fig. 9.
Fig. 9.

Film thickness distribution along the vertical axis of the soap bubble in a series of frames.

Fig. 10.
Fig. 10.

Simulated fringe patterns corresponding to the experimental ones.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

α(x,y)=cos1(1(y/Ry)2(x/Rx)21e2(y/Ry)2),
βsin1(nairnwatersinα)=sin1(0.75sinα),
η=nwatercos(β)naircos(β)cos(αβ)=43cos(αβ)3cos(β).
θfilm=4πηt/λ,
θsys(r)ar2+br4,
θ=θfilm+θsys.
Θ(x,y)=θ(x,y)θ(xs,y)+2πΔZ/λ,
Θ0(x,y)=θsys(x,y)θsys(xs,y)+2πΔZ/λ,
Θ1(x,y)=θfilm(x,y)θfilm(xs,y)+Θ0(x,y).
Θ0(x,y)=4bs(x2+y2+0.25s2+0.5a/b)x+2πΔZ/λ,
Θ1(x,y)Θ0(x,y)={θfilm(x,y),Rx<x<Rxθfilm(xs,y),sRx<x<s+Rx0,remainder.
s=2tiptan{sin1[sin(φ/2)/nip]}cos(φ/2),
N=Θ/π.
tλ=ΔN4η.

Metrics