Abstract

In the preceding paper (referred to here as paper I), we presented a general signal-to-noise performance analysis of a streak tube imaging lidar (STIL) system within the framework of linear cascaded systems theory. A cascaded model is proposed for characterizing the signal-to-noise performance of a STIL system with an internal or external intensified streak tube receiver. The STIL system can be decomposed into a series of cascaded imaging chains whose signal and noise transfer properties are described by the general (or the spatial-frequency dependent) noise factors (NFs). Equations for the general NFs of the cascaded chains (or the main components) in the STIL system are derived. This work investigates the signal-to-noise performance of an external intensified STIL system. The implementation of the cascaded model for predicting and evaluating the signal-to-noise performance of the external intensified STIL system is described. Some factors that limit the signal-to-noise performance of the external intensified STIL system are analyzed and discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. McLean, “High resolution 3-D underwater imaging,” Proc. SPIE 3761, 10–19 (1999).
    [CrossRef]
  2. M. J. DeWeert, S. E. Moran, B. L. Ulich, and R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and PMT-based airborne imaging lidar systems with realistic sea surfaces,” Proc. SPIE 3761, 115–129 (1999).
    [CrossRef]
  3. B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak tube imaging lidar (STIL) for 3-D imaging of terrestrial targets,” Tech. Rep., Arête Associates, Tucson, Ariz., 2000.
  4. V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
    [CrossRef]
  5. S. Li, Q. Wang, J. Lin, and Y. Guang, “Research of range resolution of streak tube imaging system,” Proc. SPIE 6279, 62790C (2007).
    [CrossRef]
  6. J. Wei, Q. Wang, J. Sun, and J. Gao, “High-resolution imaging of a long-distance target with a single-slit streak-tube lidar,” J. Russ. Laser Res. 31, 307–312 (2010).
    [CrossRef]
  7. A. D. Gleckler, “Multiple-slit streak tube imaging lidar (MS-STIL) applications,” Proc. SPIE 4035, 266–278 (2000).
    [CrossRef]
  8. A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001).
    [CrossRef]
  9. A. D. Gleckler and A. Gelbart, “Three-dimensional imaging polarimetry,” Proc. SPIE 4377, 175–185 (2001).
    [CrossRef]
  10. A. Gelbart, B. C. Redman, R. S. Light, C. A. Schwartzlow, and A. J. Griffis, “Flash lidar based on multiple-slit streak tube imaging lidar,” Proc. SPIE 4723, 9–18 (2002).
    [CrossRef]
  11. J. Liu, Q. Wang, S. Li, Y. Cheng, and J. Wei, “Research on a flash imaging lidar based on a multiple-streak tube,” Laser Phys. 19, 115–120 (2009).
    [CrossRef]
  12. J. Sun and Q. Wang, “4-D image reconstruction for streak tube imaging lidar,” Laser Phys. 19, 502–504 (2009).
    [CrossRef]
  13. Q. Wang, J. Liu, and S. Li, “Analysis of detectable range of multiple-slit streak tube imaging lidar,” J. Russ. Laser Res. 30, 296–303 (2009).
    [CrossRef]
  14. J. Sun, J. Liu, and Q. Wang, “A multiple-slit streak tube imaging lidar and its detection ability analysis by flash lidar equation,” Optik (to be published, 2012).
    [CrossRef]
  15. H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).
  16. M. Rabbani, R. Shaw, and R. L. Van Metter, “Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms,” J. Opt. Soc. Am. A 4, 895–901 (1987).
    [CrossRef]
  17. P. C. Bunch, K. E. Huff, and R. L. Van Metter, “Analysis of the detective quantum efficiency of a radiographic screenfilm combination,” J. Opt. Soc. Am. A 4, 902–909 (1987).
    [CrossRef]
  18. M. Rabbani and R. Shaw, “Analysis of signal and noise propagation for several imaging mechanisms,” J. Opt. Soc. Am. A 6, 1156–1164 (1989).
    [CrossRef]
  19. M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999).
    [CrossRef]
  20. G. Zanell and R. Zannoni, “DQE of imaging detectors in terms of spatial frequency,” Nucl. Instrum. Methods A 437, 163–167 (1999).
    [CrossRef]
  21. I. A. Cunningham, M. S. Westmore, and A. Fenster, “A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
    [CrossRef]
  22. J. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
    [CrossRef]
  23. J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
    [CrossRef]
  24. W. Zhao and J. A. Rowlands, “Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency,” Med. Phys. 24, 1819–1833 (1997).
    [CrossRef]
  25. I. A. Cunningham and R. Shaw, “Signal-to-noise optimization of medical imaging systems,” J. Opt. Soc. Am. 16, 621–632 (1999).
    [CrossRef]
  26. I. A. Cunningham, “Applied linear-systems theory,” in Handbook of Medical Imaging, J. Beutel, H. L. Kundel, and R. L. Van Metter, eds. Vol. 1, Physics and Psychophysics (SPIE, 2010), Chap. 2.
  27. I. A. Cunningham, M. Sattarivand, G. Hajdok, and J. Yao, “Can a Fourier-based cascaded-systems analysis describe noise in complex shift-variant spatially sampled detectors?,” Proc. SPIE 5368, 79–88 (2004).
    [CrossRef]
  28. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001), Chap. 1.
  29. S. E. Moran, B. L. Ulich, and W. P. Elkins, “Intensified CCD (ICCD) dynamic range and noise performance,” Proc. SPIE 3173, 430–457 (1997).
    [CrossRef]
  30. S. Xiang and G. Ni, The Principle of Photoelectronic Imaging Devices (National Defence Industry, Beijing, 1999).
  31. C. B. Johnson and L. D. Owen, “Image tube intensified electronic imaging,” in Handbook of Optics, 3rd ed., Vol. II, Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw-Hill Companies, 2010), Chap. 31.
  32. C. B. Johnson, S. Nevin, J. Bebris, and J. B. Abshire, “Circular-scan streak tube with solid-state readout,” Appl. Opt. 19, 3491–3495 (1980).
    [CrossRef]
  33. H. Niu, W. Sibbett, and M. R. Baggs, “Theoretical evaluation of the temporal and spatial resolutions of photochron streak image tubes,” Rev. Sci. Instrum. 53, 563–569 (1982).
    [CrossRef]
  34. C. B. Johnson, L. T. Hunkler, S. A. Letzring, and P. Jaanimagi, “Streak tube camera receiver definition studies,” Tech. Rep., ITT Electro-Optical Products Div, 1990.
  35. J. Pan, “Microchannel plates and its main characteristics,” J. Appl. Opt. 25, 25–29 (2004).
  36. S. Hejazi and D. P. Trauernicht, “System considerations in CCD-based x-ray imaging for digital chest radiography and digital mammography,” Med. Phys. 24, 287–297 (1997).
    [CrossRef]
  37. S. Vedantham, “Design and characterization of a high-resolution cardiovascular imager,” Ph. D. thesis, Worcester Polytechnic Institute, 2002.
  38. A. D. A. Maidment and M. J. Yaffe, “Analysis of signal propagation in optically coupled detectors for digital mammography: II. lens and fiber optics,” Phys. Med. Biol. 41, 475–493 (1996).
    [CrossRef]
  39. H. Liu, L. L. Fajardo, and B. C. Penny, “Signal-to-noise ratio and detective quantum efficiency analysis of optically coupled CCD mammography imaging systems,” Acad. Radiol. 3, 799–805 (1996).
    [CrossRef]
  40. A. Whiteson, “Streak tube modulation transfer functions,” Proc. SPIE 1155, 344–355 (1990).
    [CrossRef]

2010 (1)

J. Wei, Q. Wang, J. Sun, and J. Gao, “High-resolution imaging of a long-distance target with a single-slit streak-tube lidar,” J. Russ. Laser Res. 31, 307–312 (2010).
[CrossRef]

2009 (3)

J. Liu, Q. Wang, S. Li, Y. Cheng, and J. Wei, “Research on a flash imaging lidar based on a multiple-streak tube,” Laser Phys. 19, 115–120 (2009).
[CrossRef]

J. Sun and Q. Wang, “4-D image reconstruction for streak tube imaging lidar,” Laser Phys. 19, 502–504 (2009).
[CrossRef]

Q. Wang, J. Liu, and S. Li, “Analysis of detectable range of multiple-slit streak tube imaging lidar,” J. Russ. Laser Res. 30, 296–303 (2009).
[CrossRef]

2007 (1)

S. Li, Q. Wang, J. Lin, and Y. Guang, “Research of range resolution of streak tube imaging system,” Proc. SPIE 6279, 62790C (2007).
[CrossRef]

2005 (1)

V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
[CrossRef]

2004 (2)

I. A. Cunningham, M. Sattarivand, G. Hajdok, and J. Yao, “Can a Fourier-based cascaded-systems analysis describe noise in complex shift-variant spatially sampled detectors?,” Proc. SPIE 5368, 79–88 (2004).
[CrossRef]

J. Pan, “Microchannel plates and its main characteristics,” J. Appl. Opt. 25, 25–29 (2004).

2002 (1)

A. Gelbart, B. C. Redman, R. S. Light, C. A. Schwartzlow, and A. J. Griffis, “Flash lidar based on multiple-slit streak tube imaging lidar,” Proc. SPIE 4723, 9–18 (2002).
[CrossRef]

2001 (2)

A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001).
[CrossRef]

A. D. Gleckler and A. Gelbart, “Three-dimensional imaging polarimetry,” Proc. SPIE 4377, 175–185 (2001).
[CrossRef]

2000 (1)

A. D. Gleckler, “Multiple-slit streak tube imaging lidar (MS-STIL) applications,” Proc. SPIE 4035, 266–278 (2000).
[CrossRef]

1999 (5)

J. W. McLean, “High resolution 3-D underwater imaging,” Proc. SPIE 3761, 10–19 (1999).
[CrossRef]

M. J. DeWeert, S. E. Moran, B. L. Ulich, and R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and PMT-based airborne imaging lidar systems with realistic sea surfaces,” Proc. SPIE 3761, 115–129 (1999).
[CrossRef]

M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999).
[CrossRef]

G. Zanell and R. Zannoni, “DQE of imaging detectors in terms of spatial frequency,” Nucl. Instrum. Methods A 437, 163–167 (1999).
[CrossRef]

I. A. Cunningham and R. Shaw, “Signal-to-noise optimization of medical imaging systems,” J. Opt. Soc. Am. 16, 621–632 (1999).
[CrossRef]

1997 (5)

S. Hejazi and D. P. Trauernicht, “System considerations in CCD-based x-ray imaging for digital chest radiography and digital mammography,” Med. Phys. 24, 287–297 (1997).
[CrossRef]

S. E. Moran, B. L. Ulich, and W. P. Elkins, “Intensified CCD (ICCD) dynamic range and noise performance,” Proc. SPIE 3173, 430–457 (1997).
[CrossRef]

J. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef]

W. Zhao and J. A. Rowlands, “Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency,” Med. Phys. 24, 1819–1833 (1997).
[CrossRef]

1996 (2)

A. D. A. Maidment and M. J. Yaffe, “Analysis of signal propagation in optically coupled detectors for digital mammography: II. lens and fiber optics,” Phys. Med. Biol. 41, 475–493 (1996).
[CrossRef]

H. Liu, L. L. Fajardo, and B. C. Penny, “Signal-to-noise ratio and detective quantum efficiency analysis of optically coupled CCD mammography imaging systems,” Acad. Radiol. 3, 799–805 (1996).
[CrossRef]

1994 (1)

I. A. Cunningham, M. S. Westmore, and A. Fenster, “A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef]

1990 (1)

A. Whiteson, “Streak tube modulation transfer functions,” Proc. SPIE 1155, 344–355 (1990).
[CrossRef]

1989 (1)

1987 (2)

1982 (1)

H. Niu, W. Sibbett, and M. R. Baggs, “Theoretical evaluation of the temporal and spatial resolutions of photochron streak image tubes,” Rev. Sci. Instrum. 53, 563–569 (1982).
[CrossRef]

1980 (1)

Abshire, J. B.

Aleksander, O. V.

V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
[CrossRef]

Antonuk, L. E.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef]

Baggs, M. R.

H. Niu, W. Sibbett, and M. R. Baggs, “Theoretical evaluation of the temporal and spatial resolutions of photochron streak image tubes,” Rev. Sci. Instrum. 53, 563–569 (1982).
[CrossRef]

Bebris, J.

Bissonette, J. P.

J. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef]

Boreman, G. D.

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001), Chap. 1.

Boudry, J. M.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef]

Bowden, J. M.

A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001).
[CrossRef]

Bunch, P. C.

Chen, C.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Cheng, Y.

J. Liu, Q. Wang, S. Li, Y. Cheng, and J. Wei, “Research on a flash imaging lidar based on a multiple-streak tube,” Laser Phys. 19, 115–120 (2009).
[CrossRef]

Cunningham, I. A.

I. A. Cunningham, M. Sattarivand, G. Hajdok, and J. Yao, “Can a Fourier-based cascaded-systems analysis describe noise in complex shift-variant spatially sampled detectors?,” Proc. SPIE 5368, 79–88 (2004).
[CrossRef]

I. A. Cunningham and R. Shaw, “Signal-to-noise optimization of medical imaging systems,” J. Opt. Soc. Am. 16, 621–632 (1999).
[CrossRef]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef]

J. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef]

I. A. Cunningham, M. S. Westmore, and A. Fenster, “A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef]

I. A. Cunningham, “Applied linear-systems theory,” in Handbook of Medical Imaging, J. Beutel, H. L. Kundel, and R. L. Van Metter, eds. Vol. 1, Physics and Psychophysics (SPIE, 2010), Chap. 2.

DeWeert, M. J.

M. J. DeWeert, S. E. Moran, B. L. Ulich, and R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and PMT-based airborne imaging lidar systems with realistic sea surfaces,” Proc. SPIE 3761, 115–129 (1999).
[CrossRef]

Elkins, W. P.

S. E. Moran, B. L. Ulich, and W. P. Elkins, “Intensified CCD (ICCD) dynamic range and noise performance,” Proc. SPIE 3173, 430–457 (1997).
[CrossRef]

El-Mohri, Y.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef]

Fajardo, L. L.

H. Liu, L. L. Fajardo, and B. C. Penny, “Signal-to-noise ratio and detective quantum efficiency analysis of optically coupled CCD mammography imaging systems,” Acad. Radiol. 3, 799–805 (1996).
[CrossRef]

Feldman, G. G.

V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
[CrossRef]

Fenster, A.

J. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef]

I. A. Cunningham, M. S. Westmore, and A. Fenster, “A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef]

Gao, J.

J. Wei, Q. Wang, J. Sun, and J. Gao, “High-resolution imaging of a long-distance target with a single-slit streak-tube lidar,” J. Russ. Laser Res. 31, 307–312 (2010).
[CrossRef]

Gelbart, A.

A. Gelbart, B. C. Redman, R. S. Light, C. A. Schwartzlow, and A. J. Griffis, “Flash lidar based on multiple-slit streak tube imaging lidar,” Proc. SPIE 4723, 9–18 (2002).
[CrossRef]

A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001).
[CrossRef]

A. D. Gleckler and A. Gelbart, “Three-dimensional imaging polarimetry,” Proc. SPIE 4377, 175–185 (2001).
[CrossRef]

Gleckler, A. D.

A. D. Gleckler and A. Gelbart, “Three-dimensional imaging polarimetry,” Proc. SPIE 4377, 175–185 (2001).
[CrossRef]

A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001).
[CrossRef]

A. D. Gleckler, “Multiple-slit streak tube imaging lidar (MS-STIL) applications,” Proc. SPIE 4035, 266–278 (2000).
[CrossRef]

Griffis, A. J.

A. Gelbart, B. C. Redman, R. S. Light, C. A. Schwartzlow, and A. J. Griffis, “Flash lidar based on multiple-slit streak tube imaging lidar,” Proc. SPIE 4723, 9–18 (2002).
[CrossRef]

B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak tube imaging lidar (STIL) for 3-D imaging of terrestrial targets,” Tech. Rep., Arête Associates, Tucson, Ariz., 2000.

Guang, Y.

S. Li, Q. Wang, J. Lin, and Y. Guang, “Research of range resolution of streak tube imaging system,” Proc. SPIE 6279, 62790C (2007).
[CrossRef]

Hajdok, G.

I. A. Cunningham, M. Sattarivand, G. Hajdok, and J. Yao, “Can a Fourier-based cascaded-systems analysis describe noise in complex shift-variant spatially sampled detectors?,” Proc. SPIE 5368, 79–88 (2004).
[CrossRef]

Hejazi, S.

S. Hejazi and D. P. Trauernicht, “System considerations in CCD-based x-ray imaging for digital chest radiography and digital mammography,” Med. Phys. 24, 287–297 (1997).
[CrossRef]

Huang, W.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef]

Huff, K. E.

Hunkler, L. T.

C. B. Johnson, L. T. Hunkler, S. A. Letzring, and P. Jaanimagi, “Streak tube camera receiver definition studies,” Tech. Rep., ITT Electro-Optical Products Div, 1990.

Jaanimagi, P.

C. B. Johnson, L. T. Hunkler, S. A. Letzring, and P. Jaanimagi, “Streak tube camera receiver definition studies,” Tech. Rep., ITT Electro-Optical Products Div, 1990.

Jaffray, D. A.

J. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef]

Johnson, C. B.

C. B. Johnson, S. Nevin, J. Bebris, and J. B. Abshire, “Circular-scan streak tube with solid-state readout,” Appl. Opt. 19, 3491–3495 (1980).
[CrossRef]

C. B. Johnson, L. T. Hunkler, S. A. Letzring, and P. Jaanimagi, “Streak tube camera receiver definition studies,” Tech. Rep., ITT Electro-Optical Products Div, 1990.

C. B. Johnson and L. D. Owen, “Image tube intensified electronic imaging,” in Handbook of Optics, 3rd ed., Vol. II, Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw-Hill Companies, 2010), Chap. 31.

Keeler, R. N.

M. J. DeWeert, S. E. Moran, B. L. Ulich, and R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and PMT-based airborne imaging lidar systems with realistic sea surfaces,” Proc. SPIE 3761, 115–129 (1999).
[CrossRef]

Lebedev, V. B.

V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
[CrossRef]

Letzring, S. A.

C. B. Johnson, L. T. Hunkler, S. A. Letzring, and P. Jaanimagi, “Streak tube camera receiver definition studies,” Tech. Rep., ITT Electro-Optical Products Div, 1990.

Li, G.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Li, S.

J. Liu, Q. Wang, S. Li, Y. Cheng, and J. Wei, “Research on a flash imaging lidar based on a multiple-streak tube,” Laser Phys. 19, 115–120 (2009).
[CrossRef]

Q. Wang, J. Liu, and S. Li, “Analysis of detectable range of multiple-slit streak tube imaging lidar,” J. Russ. Laser Res. 30, 296–303 (2009).
[CrossRef]

S. Li, Q. Wang, J. Lin, and Y. Guang, “Research of range resolution of streak tube imaging system,” Proc. SPIE 6279, 62790C (2007).
[CrossRef]

Light, R. S.

A. Gelbart, B. C. Redman, R. S. Light, C. A. Schwartzlow, and A. J. Griffis, “Flash lidar based on multiple-slit streak tube imaging lidar,” Proc. SPIE 4723, 9–18 (2002).
[CrossRef]

Lin, J.

S. Li, Q. Wang, J. Lin, and Y. Guang, “Research of range resolution of streak tube imaging system,” Proc. SPIE 6279, 62790C (2007).
[CrossRef]

Liu, H.

H. Liu, L. L. Fajardo, and B. C. Penny, “Signal-to-noise ratio and detective quantum efficiency analysis of optically coupled CCD mammography imaging systems,” Acad. Radiol. 3, 799–805 (1996).
[CrossRef]

Liu, J.

Q. Wang, J. Liu, and S. Li, “Analysis of detectable range of multiple-slit streak tube imaging lidar,” J. Russ. Laser Res. 30, 296–303 (2009).
[CrossRef]

J. Liu, Q. Wang, S. Li, Y. Cheng, and J. Wei, “Research on a flash imaging lidar based on a multiple-streak tube,” Laser Phys. 19, 115–120 (2009).
[CrossRef]

J. Sun, J. Liu, and Q. Wang, “A multiple-slit streak tube imaging lidar and its detection ability analysis by flash lidar equation,” Optik (to be published, 2012).
[CrossRef]

Maidment, A. D. A.

A. D. A. Maidment and M. J. Yaffe, “Analysis of signal propagation in optically coupled detectors for digital mammography: II. lens and fiber optics,” Phys. Med. Biol. 41, 475–493 (1996).
[CrossRef]

McLean, J. W.

J. W. McLean, “High resolution 3-D underwater imaging,” Proc. SPIE 3761, 10–19 (1999).
[CrossRef]

Melikyan, S. S.

V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
[CrossRef]

Moran, S. E.

M. J. DeWeert, S. E. Moran, B. L. Ulich, and R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and PMT-based airborne imaging lidar systems with realistic sea surfaces,” Proc. SPIE 3761, 115–129 (1999).
[CrossRef]

S. E. Moran, B. L. Ulich, and W. P. Elkins, “Intensified CCD (ICCD) dynamic range and noise performance,” Proc. SPIE 3173, 430–457 (1997).
[CrossRef]

Munro, P.

J. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef]

Nazaryan, A. A.

V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
[CrossRef]

Nevin, S.

Ni, G.

S. Xiang and G. Ni, The Principle of Photoelectronic Imaging Devices (National Defence Industry, Beijing, 1999).

Niu, H.

H. Niu, W. Sibbett, and M. R. Baggs, “Theoretical evaluation of the temporal and spatial resolutions of photochron streak image tubes,” Rev. Sci. Instrum. 53, 563–569 (1982).
[CrossRef]

Owen, L. D.

C. B. Johnson and L. D. Owen, “Image tube intensified electronic imaging,” in Handbook of Optics, 3rd ed., Vol. II, Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw-Hill Companies, 2010), Chap. 31.

Pan, J.

J. Pan, “Microchannel plates and its main characteristics,” J. Appl. Opt. 25, 25–29 (2004).

Penny, B. C.

H. Liu, L. L. Fajardo, and B. C. Penny, “Signal-to-noise ratio and detective quantum efficiency analysis of optically coupled CCD mammography imaging systems,” Acad. Radiol. 3, 799–805 (1996).
[CrossRef]

Phillips, W.

M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999).
[CrossRef]

Rabbani, M.

Redman, B. C.

A. Gelbart, B. C. Redman, R. S. Light, C. A. Schwartzlow, and A. J. Griffis, “Flash lidar based on multiple-slit streak tube imaging lidar,” Proc. SPIE 4723, 9–18 (2002).
[CrossRef]

B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak tube imaging lidar (STIL) for 3-D imaging of terrestrial targets,” Tech. Rep., Arête Associates, Tucson, Ariz., 2000.

Rowlands, J. A.

W. Zhao and J. A. Rowlands, “Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency,” Med. Phys. 24, 1819–1833 (1997).
[CrossRef]

Sattarivand, M.

I. A. Cunningham, M. Sattarivand, G. Hajdok, and J. Yao, “Can a Fourier-based cascaded-systems analysis describe noise in complex shift-variant spatially sampled detectors?,” Proc. SPIE 5368, 79–88 (2004).
[CrossRef]

Schibley, E. B.

B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak tube imaging lidar (STIL) for 3-D imaging of terrestrial targets,” Tech. Rep., Arête Associates, Tucson, Ariz., 2000.

Schwartzlow, C. A.

A. Gelbart, B. C. Redman, R. S. Light, C. A. Schwartzlow, and A. J. Griffis, “Flash lidar based on multiple-slit streak tube imaging lidar,” Proc. SPIE 4723, 9–18 (2002).
[CrossRef]

Shaw, R.

Sibbett, W.

H. Niu, W. Sibbett, and M. R. Baggs, “Theoretical evaluation of the temporal and spatial resolutions of photochron streak image tubes,” Rev. Sci. Instrum. 53, 563–569 (1982).
[CrossRef]

Siewerdsen, J. H.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef]

Simoni, P. U.

M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999).
[CrossRef]

Smilowitz, L.

M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999).
[CrossRef]

Stanton, M.

M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999).
[CrossRef]

Stewart, A.

M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999).
[CrossRef]

Sun, J.

J. Wei, Q. Wang, J. Sun, and J. Gao, “High-resolution imaging of a long-distance target with a single-slit streak-tube lidar,” J. Russ. Laser Res. 31, 307–312 (2010).
[CrossRef]

J. Sun and Q. Wang, “4-D image reconstruction for streak tube imaging lidar,” Laser Phys. 19, 502–504 (2009).
[CrossRef]

J. Sun, J. Liu, and Q. Wang, “A multiple-slit streak tube imaging lidar and its detection ability analysis by flash lidar equation,” Optik (to be published, 2012).
[CrossRef]

Trauernicht, D. P.

S. Hejazi and D. P. Trauernicht, “System considerations in CCD-based x-ray imaging for digital chest radiography and digital mammography,” Med. Phys. 24, 287–297 (1997).
[CrossRef]

Tsovyan, A. A.

V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
[CrossRef]

Ulich, B. L.

M. J. DeWeert, S. E. Moran, B. L. Ulich, and R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and PMT-based airborne imaging lidar systems with realistic sea surfaces,” Proc. SPIE 3761, 115–129 (1999).
[CrossRef]

S. E. Moran, B. L. Ulich, and W. P. Elkins, “Intensified CCD (ICCD) dynamic range and noise performance,” Proc. SPIE 3173, 430–457 (1997).
[CrossRef]

Van Metter, R. L.

Vedantham, S.

S. Vedantham, “Design and characterization of a high-resolution cardiovascular imager,” Ph. D. thesis, Worcester Polytechnic Institute, 2002.

Wang, Q.

J. Wei, Q. Wang, J. Sun, and J. Gao, “High-resolution imaging of a long-distance target with a single-slit streak-tube lidar,” J. Russ. Laser Res. 31, 307–312 (2010).
[CrossRef]

J. Sun and Q. Wang, “4-D image reconstruction for streak tube imaging lidar,” Laser Phys. 19, 502–504 (2009).
[CrossRef]

Q. Wang, J. Liu, and S. Li, “Analysis of detectable range of multiple-slit streak tube imaging lidar,” J. Russ. Laser Res. 30, 296–303 (2009).
[CrossRef]

J. Liu, Q. Wang, S. Li, Y. Cheng, and J. Wei, “Research on a flash imaging lidar based on a multiple-streak tube,” Laser Phys. 19, 115–120 (2009).
[CrossRef]

S. Li, Q. Wang, J. Lin, and Y. Guang, “Research of range resolution of streak tube imaging system,” Proc. SPIE 6279, 62790C (2007).
[CrossRef]

J. Sun, J. Liu, and Q. Wang, “A multiple-slit streak tube imaging lidar and its detection ability analysis by flash lidar equation,” Optik (to be published, 2012).
[CrossRef]

Wang, X.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Wei, J.

J. Wei, Q. Wang, J. Sun, and J. Gao, “High-resolution imaging of a long-distance target with a single-slit streak-tube lidar,” J. Russ. Laser Res. 31, 307–312 (2010).
[CrossRef]

J. Liu, Q. Wang, S. Li, Y. Cheng, and J. Wei, “Research on a flash imaging lidar based on a multiple-streak tube,” Laser Phys. 19, 115–120 (2009).
[CrossRef]

Westmore, M. S.

I. A. Cunningham, M. S. Westmore, and A. Fenster, “A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef]

Whiteson, A.

A. Whiteson, “Streak tube modulation transfer functions,” Proc. SPIE 1155, 344–355 (1990).
[CrossRef]

Williams, M. B.

M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999).
[CrossRef]

Wu, B.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Wu, L.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Xiang, S.

S. Xiang and G. Ni, The Principle of Photoelectronic Imaging Devices (National Defence Industry, Beijing, 1999).

Xue, Z.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Yaffe, M. J.

A. D. A. Maidment and M. J. Yaffe, “Analysis of signal propagation in optically coupled detectors for digital mammography: II. lens and fiber optics,” Phys. Med. Biol. 41, 475–493 (1996).
[CrossRef]

Yang, B.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Yang, H.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Yao, J.

I. A. Cunningham, M. Sattarivand, G. Hajdok, and J. Yao, “Can a Fourier-based cascaded-systems analysis describe noise in complex shift-variant spatially sampled detectors?,” Proc. SPIE 5368, 79–88 (2004).
[CrossRef]

Yedigaryan, Y. A.

V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
[CrossRef]

Yorkston, J.

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef]

Yu, B.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Yuan, L.

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Zanell, G.

G. Zanell and R. Zannoni, “DQE of imaging detectors in terms of spatial frequency,” Nucl. Instrum. Methods A 437, 163–167 (1999).
[CrossRef]

Zannoni, R.

G. Zanell and R. Zannoni, “DQE of imaging detectors in terms of spatial frequency,” Nucl. Instrum. Methods A 437, 163–167 (1999).
[CrossRef]

Zhao, W.

W. Zhao and J. A. Rowlands, “Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency,” Med. Phys. 24, 1819–1833 (1997).
[CrossRef]

Acad. Radiol. (1)

H. Liu, L. L. Fajardo, and B. C. Penny, “Signal-to-noise ratio and detective quantum efficiency analysis of optically coupled CCD mammography imaging systems,” Acad. Radiol. 3, 799–805 (1996).
[CrossRef]

Appl. Opt. (1)

J. Appl. Opt. (1)

J. Pan, “Microchannel plates and its main characteristics,” J. Appl. Opt. 25, 25–29 (2004).

J. Opt. Soc. Am. (1)

I. A. Cunningham and R. Shaw, “Signal-to-noise optimization of medical imaging systems,” J. Opt. Soc. Am. 16, 621–632 (1999).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Russ. Laser Res. (2)

Q. Wang, J. Liu, and S. Li, “Analysis of detectable range of multiple-slit streak tube imaging lidar,” J. Russ. Laser Res. 30, 296–303 (2009).
[CrossRef]

J. Wei, Q. Wang, J. Sun, and J. Gao, “High-resolution imaging of a long-distance target with a single-slit streak-tube lidar,” J. Russ. Laser Res. 31, 307–312 (2010).
[CrossRef]

Laser Phys. (2)

J. Liu, Q. Wang, S. Li, Y. Cheng, and J. Wei, “Research on a flash imaging lidar based on a multiple-streak tube,” Laser Phys. 19, 115–120 (2009).
[CrossRef]

J. Sun and Q. Wang, “4-D image reconstruction for streak tube imaging lidar,” Laser Phys. 19, 502–504 (2009).
[CrossRef]

Med. Phys. (6)

M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999).
[CrossRef]

I. A. Cunningham, M. S. Westmore, and A. Fenster, “A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994).
[CrossRef]

J. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997).
[CrossRef]

J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997).
[CrossRef]

W. Zhao and J. A. Rowlands, “Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency,” Med. Phys. 24, 1819–1833 (1997).
[CrossRef]

S. Hejazi and D. P. Trauernicht, “System considerations in CCD-based x-ray imaging for digital chest radiography and digital mammography,” Med. Phys. 24, 287–297 (1997).
[CrossRef]

Nucl. Instrum. Methods A (1)

G. Zanell and R. Zannoni, “DQE of imaging detectors in terms of spatial frequency,” Nucl. Instrum. Methods A 437, 163–167 (1999).
[CrossRef]

Phys. Med. Biol. (1)

A. D. A. Maidment and M. J. Yaffe, “Analysis of signal propagation in optically coupled detectors for digital mammography: II. lens and fiber optics,” Phys. Med. Biol. 41, 475–493 (1996).
[CrossRef]

Proc. SPIE (11)

A. D. Gleckler, “Multiple-slit streak tube imaging lidar (MS-STIL) applications,” Proc. SPIE 4035, 266–278 (2000).
[CrossRef]

A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001).
[CrossRef]

A. D. Gleckler and A. Gelbart, “Three-dimensional imaging polarimetry,” Proc. SPIE 4377, 175–185 (2001).
[CrossRef]

A. Gelbart, B. C. Redman, R. S. Light, C. A. Schwartzlow, and A. J. Griffis, “Flash lidar based on multiple-slit streak tube imaging lidar,” Proc. SPIE 4723, 9–18 (2002).
[CrossRef]

J. W. McLean, “High resolution 3-D underwater imaging,” Proc. SPIE 3761, 10–19 (1999).
[CrossRef]

M. J. DeWeert, S. E. Moran, B. L. Ulich, and R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and PMT-based airborne imaging lidar systems with realistic sea surfaces,” Proc. SPIE 3761, 115–129 (1999).
[CrossRef]

V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005).
[CrossRef]

S. Li, Q. Wang, J. Lin, and Y. Guang, “Research of range resolution of streak tube imaging system,” Proc. SPIE 6279, 62790C (2007).
[CrossRef]

A. Whiteson, “Streak tube modulation transfer functions,” Proc. SPIE 1155, 344–355 (1990).
[CrossRef]

S. E. Moran, B. L. Ulich, and W. P. Elkins, “Intensified CCD (ICCD) dynamic range and noise performance,” Proc. SPIE 3173, 430–457 (1997).
[CrossRef]

I. A. Cunningham, M. Sattarivand, G. Hajdok, and J. Yao, “Can a Fourier-based cascaded-systems analysis describe noise in complex shift-variant spatially sampled detectors?,” Proc. SPIE 5368, 79–88 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Niu, W. Sibbett, and M. R. Baggs, “Theoretical evaluation of the temporal and spatial resolutions of photochron streak image tubes,” Rev. Sci. Instrum. 53, 563–569 (1982).
[CrossRef]

Other (9)

C. B. Johnson, L. T. Hunkler, S. A. Letzring, and P. Jaanimagi, “Streak tube camera receiver definition studies,” Tech. Rep., ITT Electro-Optical Products Div, 1990.

S. Xiang and G. Ni, The Principle of Photoelectronic Imaging Devices (National Defence Industry, Beijing, 1999).

C. B. Johnson and L. D. Owen, “Image tube intensified electronic imaging,” in Handbook of Optics, 3rd ed., Vol. II, Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw-Hill Companies, 2010), Chap. 31.

S. Vedantham, “Design and characterization of a high-resolution cardiovascular imager,” Ph. D. thesis, Worcester Polytechnic Institute, 2002.

G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001), Chap. 1.

I. A. Cunningham, “Applied linear-systems theory,” in Handbook of Medical Imaging, J. Beutel, H. L. Kundel, and R. L. Van Metter, eds. Vol. 1, Physics and Psychophysics (SPIE, 2010), Chap. 2.

B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak tube imaging lidar (STIL) for 3-D imaging of terrestrial targets,” Tech. Rep., Arête Associates, Tucson, Ariz., 2000.

J. Sun, J. Liu, and Q. Wang, “A multiple-slit streak tube imaging lidar and its detection ability analysis by flash lidar equation,” Optik (to be published, 2012).
[CrossRef]

H. Yang, L. Wu, X. Wang, C. Chen, B. Yu, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model,” Appl. Opt.51, 8825–8835 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Basic components of the external intensified STIL system.

Fig. 2.
Fig. 2.

Gain NF as a function of the MCP applied voltage Vm and the statistics parameters b1 and b2 for the image intensifier.

Fig. 3.
Fig. 3.

Theoretical results of (a) general NF and (b) general DQE for the ST in the slit direction.

Fig. 4.
Fig. 4.

Theoretical results of (a) general NF and (b) general DQE for the image intensifier tube.

Fig. 5.
Fig. 5.

Frequency-dependent QAD of the external intensified STIL system in the slit direction as a function of spatial frequency f and the MCP applied voltage Vm: (a) Vm=500V and (b) Vm=800V.

Fig. 6.
Fig. 6.

Theoretical results of (a) general NF and (b) general DQE for the external intensified STIL system in the slit direction.

Fig. 7.
Fig. 7.

Effects of the MTFs of the ST and the image intensifier tube on the signal-to-noise performance of the external intensified STIL system in the slit direction: (a) general NF and (b) general DQE.

Fig. 8.
Fig. 8.

Comparisons of general NFs of the external intensified STIL system with the coupling lens or the FOP in the slit direction: (a) Vm=500V and (b) Vm=800V.

Fig. 9.
Fig. 9.

Comparisons of general DQEs of the external intensified STIL system with the coupling lens or the FOP in the slit direction: (a) Vm=500V and (b) Vm=800V.

Fig. 10.
Fig. 10.

Comparison of the measured overall MTF of the external intensified STIL system with the theory result in the slit direction.

Fig. 11.
Fig. 11.

Comparison of the measured NF of the external intensified STIL system with the theory result in the slit direction.

Tables (1)

Tables Icon

Table 1. Summary of Cascaded Stages in the External Intensified STIL System

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

SNREISTIL2(u,v)=SNRIn2(u,v)NFEISTIL(u,v),
NFEISTIL(u,v)=1+[NFRO(u,v)1]+NFST(u,v)1G¯RO(u,v)+NFCOA(u,v)1G¯RO(u,v)G¯ST(u,v)+NFII(u,v)1G¯RO(u,v)G¯ST(u,v)G¯COA(u,v)+NFCOB(u,v)1G¯RO(u,v)G¯ST(u,v)G¯COA(u,v)G¯II(u,v)+NFCCD(u,v)1G¯RO(u,v)G¯ST(u,v)G¯COA(u,v)G¯II(u,v)G¯COB(u,v).
NFEISTIL(u,v)=SNRIn2(u,v)SNROut2(u,v)=ΦIn(u,v)/SIn(u,v)ΦOut(u,v)/SOut(u,v),
NFEISTIL(u,v)=SOut(u,v)/SIn(u,v)g¯Tot2TTot2(u,v)=SOut(u,v)q¯0g¯Tot2TTot2(u,v),
SOut(u,v)=g¯Tot2TTot2(u,v)NFEISTIL(u,v)q¯0.
um=mξu/Mu,
vn=nξv/Mv,
ξu=2ζu/M,
ξv=2ζv/N.
SOut(u,v)=ΔxΔyMROINROIE{|DFT{d(x,y)d¯(x,y)}|2},
σOut2=SOut(0,0)=++SOut(u,v)dudv.
SNROut2(0,0)=SNRIn2(0,0)NFEISTIL(0,0)=g¯Tot2TTot2(0,0)q¯02SOut(0,0)=g¯Tot2q¯02σOut2,
NFRO(u,v)FROG=1/g¯RO=1.25,
FSTG=1η¯pcη¯mesh+1η¯pcη¯meshg¯ps=17.9.
uST=RST/ln(20)=11.6lp/mm.
Δτst=(Δτphys)2+(Δτtech)2,
Δτtech=(MstRSTvsweep)2+(MslitWslitvsweep)2,
vST=RSTln(20)=1ln(20)1Δτst·vsweep,
NFST(u,v)=1+(FSTG1)+FSTS(u,v)1g¯ST=FSTG+1TST2(u)TST2(v)g¯STTST2(u)TST2(v),
g¯mcp(Vm)=δ¯1(Vm)δ¯2n1(Vm)=(nVpk+VmnVc)k(VmnVc)k(n1)=(2000+Vm482.7)0.91(Vm482.7)0.91*(101),
FIIG(Vm)=1+bη¯pcη¯mcp+1η¯pcη¯mcpg¯mcp(Vm)+1η¯pcη¯mcpg¯mcp(Vm)g¯ps,
b=b1+1δ¯1+1+b2δ¯2δ¯1(δ¯21)(1+b2)δ¯2(n3)δ¯1(δ¯21),δ¯2>1.
NFII(u,v)=1+(FIIG1)+FIIS(u,v)1g¯II=FIIG+1TII2(u,v)g¯IITII2(u,v),
TD2(fD)=11+g¯DFDG/9,
ηFO=(1ηr)Fcτcni2sin2θi/M2=ηc(NA)2/M2,
NFFOP(ρ)=1η¯FOPTFOP2(ρ),
η¯lens=τlens1+4F2(1+Dm)2=0.009.
NFCL(u,v)=1g¯CLTCL2(u,v)1η¯lens=111.1,
FCCDG=1/g¯CCD=γ¯CCD/η¯CCD=342.9,
MTFCCD(u,v)=|sin(πFbu)πFbu||sin(πFdv)πFdv|,
FCCDA=1+σCCDadd2/ϕ¯CCDin,
NFCCD(u,v)=1+(FCCDG1)+FCCDA(u,v)1g¯CCD+FCCDS1g¯CCD=1g¯CCD+σCCDadd2ϕ¯CCDing¯CCD.
NFD(f)=1+(FDG1)+FDS(f)1g¯D=FDG+1TD2(f)g¯DTD2(f),
NFD(fD)=109NFD(0)=109FDG.
TD2(fD)=11+g¯DFDG/9.

Metrics