Abstract

This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of both cold (300K) and hot (2400K) nitric oxide (NO) at a framing rate of 10 kHz. The laser system is composed of a frequency-doubled dye laser pumped by the third harmonic of a 10 kHz Nd:YAG laser to generate continuously pulsed laser radiation at 226 nm for excitation of NO. The laser-induced fluorescence signal is detected using a high-frame rate, intensified CMOS camera, yielding a continuous cinematographic propagation of the NO plume where data acquisition duration is limited only by camera memory. The pulse energy of the beam is 20μJ with a spectral width 0.15cm1, though energies as high as 40 μJ were generated. Hot NO is generated by passing air through a DC transient-arc plasma torch that dissociates air. The plasma torch is also used to ignite and sustain a CH4/air premixed flame. Cold NO is imaged from a 1% NO flow (buffered by nitrogen). The estimated signal-to-noise ratio (SNR) for the cold seeded flow and air plasma exceeds 50 with expected NO concentrations of 6000–8000 parts per million (ppm, volume basis). Images show distinct, high-contrast boundaries. The plasma-assisted flame images have an SNR of less than 10 for concentrations reaching 1000 ppm. For many combustion applications, the pulse energy is insufficient for PLIF measurements. However, the equipment and strategies herein could be applied to high-frequency line imaging of NO at concentrations of 10–100 ppm. Generation of 226 nm radiation was also performed using sum-frequency mixing of the 532 nm pumped dye laser and 355 nm Nd:YAG third harmonic but was limited in energy to 14 μJ. Frequency tripling a 532 nm pumped dye laser produced 226 nm radiation at energies comparable to the 355 nm pumping scheme.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kychakoff, R. D. Howe, R. K. Hanson, and J. C. McDaniel, “Quantitative visualization of combustion species in a plane,” Appl. Opt. 21, 3225–3227 (1982).
    [CrossRef]
  2. K. Kohse-Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics, Combustion: An International Series (Taylor and Francis, 2002).
  3. K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Scalar and velocity field measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
    [CrossRef]
  4. A. M. Steinberg, J. F. Driscoll, D. J. Micka, S. L. Ceccio, and C. D. Carter, “A cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” in Proceedings of 5th US Combust. Meeting (Curran Associates, 2007), pp. 672–682.
  5. M. W. Renfro, M. S. Klassen, G. B. King, and N. M. Laurendeau, “Time-series measurements of ch concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
    [CrossRef]
  6. M. W. Renfro, S. D. Pack, G. B. King, and N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
    [CrossRef]
  7. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
    [CrossRef]
  8. W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of oh radicals,” Appl. Phys. B 86, 1–5 (2007).
    [CrossRef]
  9. W. Paa, D. Müller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 58808, 58800N (2005).
    [CrossRef]
  10. B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pluse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43, 5064–5073 (2004).
    [CrossRef]
  11. N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008).
    [CrossRef]
  12. N. Jiang and W. R. Lempert, “Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging,” Opt. Lett. 33, 2236–2238 (2008).
    [CrossRef]
  13. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “Mhz-rate nitric oxide planar laser-induced fluorescence imaging in a mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011).
    [CrossRef]
  14. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
    [CrossRef]
  15. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012).
    [CrossRef]
  16. I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
    [CrossRef]
  17. I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
    [CrossRef]
  18. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
    [CrossRef]
  19. A. Steinberg, I. Boxx, C. Arndt, J. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
    [CrossRef]
  20. R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow Turbul. Combust. 88, 503–527 (2012).
    [CrossRef]
  21. C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
    [CrossRef]
  22. B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009).
    [CrossRef]
  23. A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010).
    [CrossRef]
  24. I. Boxx, C. Arndt, C. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).
    [CrossRef]
  25. M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst. 33, 2953–2960(2011).
    [CrossRef]
  26. C. T. Bowman, “Gas-phase reaction mechanisms for nitrogen oxide formation and removal in combustion,” in Pollutants from Combustion, C. Vovelle, ed. (Kluwer, 2000), pp. 123–144.
  27. R. L. McKenzie and K. P. Gross, “Two-photon excitation of nitric oxide fluorescence as a temperature indicator in unsteady gasdynamic processes,” Appl. Opt. 20, 2153–2165 (1981).
    [CrossRef]
  28. J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef]
  29. A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
    [CrossRef]
  30. P. H. Paul, M. P. Lee, B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Application of planar laser-induced fluorescence imaging diagnostics to supersonic reacting flow,” 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, (American Institute for Aeronautics and Astronautics, 1990), paper  AIAA-90-1844.
  31. C. Schulz, B. Yip, V. Sick, and J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
    [CrossRef]
  32. M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, and P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
    [CrossRef]
  33. C. S. Cooper and N. M. Laurendeau, “Short communication parametric study of no production in high-pressure, lean premixed-prevaporized spray flames,” Combust. Sci. Technol. 167, 311–318 (2001).
    [CrossRef]
  34. Y. D. Korolev and I. B. Matveev, “Nonsteady-state processes in a plasma pilot for ignition and flame control,” IEEE Trans. Plasma Sci. 34, 2507–2513 (2006).
    [CrossRef]
  35. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007).
    [CrossRef]
  36. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009).
    [CrossRef]
  37. X. Rao, I. Matveev, and T. Lee, “Nitric oxide formation in a premixed flame with high-level plasma energy coupling,” IEEE Trans. Plasma Sci. 37, 2303–2313 (2009).
    [CrossRef]
  38. X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010).
    [CrossRef]
  39. W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), p. PI05.
  40. T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
    [CrossRef]
  41. A. Bao, “Ignition of hydrocarbon fuels by a repetitively pulsed nanosecond pulse duration plasma,” thesis (Ohio State University, 2008).
  42. B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
    [CrossRef]
  43. W. Kim, H. Do, M. G. Mungal, and M. A. Cappelli, “Investigation of NO production and flame structure in plasma enhanced premixed combustion,” Proc. Combust. Inst. 31, 3319–3326 (2007).
    [CrossRef]
  44. W. Kim, M. Godfrey Mungal, and M. A. Cappelli, “The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames,” Combust. Flame 157, 374–383 (2010).
    [CrossRef]

2012

R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow Turbul. Combust. 88, 503–527 (2012).
[CrossRef]

I. Boxx, C. Arndt, C. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).
[CrossRef]

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012).
[CrossRef]

2011

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “Mhz-rate nitric oxide planar laser-induced fluorescence imaging in a mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011).
[CrossRef]

M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst. 33, 2953–2960(2011).
[CrossRef]

A. Steinberg, I. Boxx, C. Arndt, J. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[CrossRef]

2010

A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010).
[CrossRef]

X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010).
[CrossRef]

W. Kim, M. Godfrey Mungal, and M. A. Cappelli, “The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames,” Combust. Flame 157, 374–383 (2010).
[CrossRef]

2009

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009).
[CrossRef]

X. Rao, I. Matveev, and T. Lee, “Nitric oxide formation in a premixed flame with high-level plasma energy coupling,” IEEE Trans. Plasma Sci. 37, 2303–2313 (2009).
[CrossRef]

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
[CrossRef]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009).
[CrossRef]

2008

2007

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007).
[CrossRef]

W. Kim, H. Do, M. G. Mungal, and M. A. Cappelli, “Investigation of NO production and flame structure in plasma enhanced premixed combustion,” Proc. Combust. Inst. 31, 3319–3326 (2007).
[CrossRef]

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
[CrossRef]

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of oh radicals,” Appl. Phys. B 86, 1–5 (2007).
[CrossRef]

2006

Y. D. Korolev and I. B. Matveev, “Nonsteady-state processes in a plasma pilot for ignition and flame control,” IEEE Trans. Plasma Sci. 34, 2507–2513 (2006).
[CrossRef]

2005

W. Paa, D. Müller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 58808, 58800N (2005).
[CrossRef]

2004

2001

C. S. Cooper and N. M. Laurendeau, “Short communication parametric study of no production in high-pressure, lean premixed-prevaporized spray flames,” Combust. Sci. Technol. 167, 311–318 (2001).
[CrossRef]

1999

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Scalar and velocity field measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

1998

M. W. Renfro, S. D. Pack, G. B. King, and N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

1997

1996

1995

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

C. Schulz, B. Yip, V. Sick, and J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

1992

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

1985

1982

1981

Aigner, M.

I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
[CrossRef]

Aldén, M.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Andresen, P.

Arndt, C.

I. Boxx, C. Arndt, C. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).
[CrossRef]

A. Steinberg, I. Boxx, C. Arndt, J. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[CrossRef]

Arnold, A.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

Bao, A.

A. Bao, “Ignition of hydrocarbon fuels by a repetitively pulsed nanosecond pulse duration plasma,” thesis (Ohio State University, 2008).

Bessler, W. G.

W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), p. PI05.

Beushausen, V.

Böhm, B.

I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[CrossRef]

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009).
[CrossRef]

Bowman, C. T.

C. T. Bowman, “Gas-phase reaction mechanisms for nitrogen oxide formation and removal in combustion,” in Pollutants from Combustion, C. Vovelle, ed. (Kluwer, 2000), pp. 123–144.

Boxx, I.

I. Boxx, C. Arndt, C. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).
[CrossRef]

R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow Turbul. Combust. 88, 503–527 (2012).
[CrossRef]

M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst. 33, 2953–2960(2011).
[CrossRef]

A. Steinberg, I. Boxx, C. Arndt, J. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[CrossRef]

A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010).
[CrossRef]

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009).
[CrossRef]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[CrossRef]

Cappelli, M. A.

W. Kim, M. Godfrey Mungal, and M. A. Cappelli, “The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames,” Combust. Flame 157, 374–383 (2010).
[CrossRef]

W. Kim, H. Do, M. G. Mungal, and M. A. Cappelli, “Investigation of NO production and flame structure in plasma enhanced premixed combustion,” Proc. Combust. Inst. 31, 3319–3326 (2007).
[CrossRef]

Carter, C.

R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow Turbul. Combust. 88, 503–527 (2012).
[CrossRef]

I. Boxx, C. Arndt, C. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).
[CrossRef]

M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst. 33, 2953–2960(2011).
[CrossRef]

X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010).
[CrossRef]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Carter, C. D.

A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Scalar and velocity field measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

A. M. Steinberg, J. F. Driscoll, D. J. Micka, S. L. Ceccio, and C. D. Carter, “A cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” in Proceedings of 5th US Combust. Meeting (Curran Associates, 2007), pp. 672–682.

Ceccio, S. L.

A. M. Steinberg, J. F. Driscoll, D. J. Micka, S. L. Ceccio, and C. D. Carter, “A cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” in Proceedings of 5th US Combust. Meeting (Curran Associates, 2007), pp. 672–682.

Cooper, C. S.

C. S. Cooper and N. M. Laurendeau, “Short communication parametric study of no production in high-pressure, lean premixed-prevaporized spray flames,” Combust. Sci. Technol. 167, 311–318 (2001).
[CrossRef]

Daily, J. W.

W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), p. PI05.

Danczyk, S. A.

Danehy, P. M.

Dinkelacker, F.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

Do, H.

W. Kim, H. Do, M. G. Mungal, and M. A. Cappelli, “Investigation of NO production and flame structure in plasma enhanced premixed combustion,” Proc. Combust. Inst. 31, 3319–3326 (2007).
[CrossRef]

Donbar, J. M.

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Scalar and velocity field measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

Dreizler, A.

R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow Turbul. Combust. 88, 503–527 (2012).
[CrossRef]

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
[CrossRef]

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
[CrossRef]

Driscoll, J. F.

A. M. Steinberg, J. F. Driscoll, D. J. Micka, S. L. Ceccio, and C. D. Carter, “A cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” in Proceedings of 5th US Combust. Meeting (Curran Associates, 2007), pp. 672–682.

Ferreira, C. M.

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

Frank, J.

A. Steinberg, I. Boxx, C. Arndt, J. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[CrossRef]

Frants, O. B.

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009).
[CrossRef]

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007).
[CrossRef]

Gawlik, A.

W. Paa, D. Müller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 58808, 58800N (2005).
[CrossRef]

Geyman, V. G.

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009).
[CrossRef]

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007).
[CrossRef]

Gord, J. R.

Gordiets, B. F.

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

Gordon, R.

R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow Turbul. Combust. 88, 503–527 (2012).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
[CrossRef]

Gross, K. P.

Guerra, V. L.

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

Hammack, S.

X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010).
[CrossRef]

Hanson, R. K.

J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef]

G. Kychakoff, R. D. Howe, R. K. Hanson, and J. C. McDaniel, “Quantitative visualization of combustion species in a plane,” Appl. Opt. 21, 3225–3227 (1982).
[CrossRef]

P. H. Paul, M. P. Lee, B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Application of planar laser-induced fluorescence imaging diagnostics to supersonic reacting flow,” 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, (American Institute for Aeronautics and Astronautics, 1990), paper  AIAA-90-1844.

Heeger, C.

I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[CrossRef]

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009).
[CrossRef]

Heitzmann, T.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

Hentschel, W.

M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, and P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

Howe, R. D.

Hult, J.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Humphries, W. H.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Ivey, C. B.

Jeffries, J. B.

K. Kohse-Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics, Combustion: An International Series (Taylor and Francis, 2002).

Jiang, N.

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Kim, W.

W. Kim, M. Godfrey Mungal, and M. A. Cappelli, “The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames,” Combust. Flame 157, 374–383 (2010).
[CrossRef]

W. Kim, H. Do, M. G. Mungal, and M. A. Cappelli, “Investigation of NO production and flame structure in plasma enhanced premixed combustion,” Proc. Combust. Inst. 31, 3319–3326 (2007).
[CrossRef]

King, G. B.

M. W. Renfro, S. D. Pack, G. B. King, and N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

M. W. Renfro, M. S. Klassen, G. B. King, and N. M. Laurendeau, “Time-series measurements of ch concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
[CrossRef]

Kittler, C.

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
[CrossRef]

Klassen, M. S.

Knapp, M.

Kohse-Hoinghaus, K.

K. Kohse-Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics, Combustion: An International Series (Taylor and Francis, 2002).

Korolev, Y. D.

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009).
[CrossRef]

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007).
[CrossRef]

Y. D. Korolev and I. B. Matveev, “Nonsteady-state processes in a plasma pilot for ignition and flame control,” IEEE Trans. Plasma Sci. 34, 2507–2513 (2006).
[CrossRef]

Kychakoff, G.

Landl, N. V.

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009).
[CrossRef]

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007).
[CrossRef]

Laurendeau, N. M.

C. S. Cooper and N. M. Laurendeau, “Short communication parametric study of no production in high-pressure, lean premixed-prevaporized spray flames,” Combust. Sci. Technol. 167, 311–318 (2001).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, and N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

M. W. Renfro, M. S. Klassen, G. B. King, and N. M. Laurendeau, “Time-series measurements of ch concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
[CrossRef]

Lee, M. P.

P. H. Paul, M. P. Lee, B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Application of planar laser-induced fluorescence imaging diagnostics to supersonic reacting flow,” 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, (American Institute for Aeronautics and Astronautics, 1990), paper  AIAA-90-1844.

Lee, T.

X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010).
[CrossRef]

X. Rao, I. Matveev, and T. Lee, “Nitric oxide formation in a premixed flame with high-level plasma energy coupling,” IEEE Trans. Plasma Sci. 37, 2303–2313 (2009).
[CrossRef]

Lempert, W.

Lempert, W. R.

Loureiro, J. M. A. H.

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

Luczak, A.

Lyons, K. M.

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Scalar and velocity field measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

Matveev, I.

X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010).
[CrossRef]

X. Rao, I. Matveev, and T. Lee, “Nitric oxide formation in a premixed flame with high-level plasma energy coupling,” IEEE Trans. Plasma Sci. 37, 2303–2313 (2009).
[CrossRef]

Matveev, I. B.

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009).
[CrossRef]

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007).
[CrossRef]

Y. D. Korolev and I. B. Matveev, “Nonsteady-state processes in a plasma pilot for ignition and flame control,” IEEE Trans. Plasma Sci. 34, 2507–2513 (2006).
[CrossRef]

McDaniel, J. C.

McKenzie, R. L.

McMillin, B. K.

P. H. Paul, M. P. Lee, B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Application of planar laser-induced fluorescence imaging diagnostics to supersonic reacting flow,” 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, (American Institute for Aeronautics and Astronautics, 1990), paper  AIAA-90-1844.

Meier, W.

I. Boxx, C. Arndt, C. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).
[CrossRef]

R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow Turbul. Combust. 88, 503–527 (2012).
[CrossRef]

M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst. 33, 2953–2960(2011).
[CrossRef]

A. Steinberg, I. Boxx, C. Arndt, J. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[CrossRef]

A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010).
[CrossRef]

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009).
[CrossRef]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
[CrossRef]

Meyer, T. R.

Micka, D. J.

A. M. Steinberg, J. F. Driscoll, D. J. Micka, S. L. Ceccio, and C. D. Carter, “A cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” in Proceedings of 5th US Combust. Meeting (Curran Associates, 2007), pp. 672–682.

Miller, J. D.

Monkhouse, P.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

Müller, D.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of oh radicals,” Appl. Phys. B 86, 1–5 (2007).
[CrossRef]

W. Paa, D. Müller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 58808, 58800N (2005).
[CrossRef]

Mungal, M. G.

W. Kim, H. Do, M. G. Mungal, and M. A. Cappelli, “Investigation of NO production and flame structure in plasma enhanced premixed combustion,” Proc. Combust. Inst. 31, 3319–3326 (2007).
[CrossRef]

Mungal, M. Godfrey

W. Kim, M. Godfrey Mungal, and M. A. Cappelli, “The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames,” Combust. Flame 157, 374–383 (2010).
[CrossRef]

Nahorny, J.

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

Paa, W.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of oh radicals,” Appl. Phys. B 86, 1–5 (2007).
[CrossRef]

W. Paa, D. Müller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 58808, 58800N (2005).
[CrossRef]

Pack, S. D.

M. W. Renfro, S. D. Pack, G. B. King, and N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

Pagnon, D.

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

Patterson, B. D.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Paul, P. H.

P. H. Paul, M. P. Lee, B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Application of planar laser-induced fluorescence imaging diagnostics to supersonic reacting flow,” 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, (American Institute for Aeronautics and Astronautics, 1990), paper  AIAA-90-1844.

Rao, X.

X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010).
[CrossRef]

X. Rao, I. Matveev, and T. Lee, “Nitric oxide formation in a premixed flame with high-level plasma energy coupling,” IEEE Trans. Plasma Sci. 37, 2303–2313 (2009).
[CrossRef]

Renfro, M. W.

M. W. Renfro, S. D. Pack, G. B. King, and N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

M. W. Renfro, M. S. Klassen, G. B. King, and N. M. Laurendeau, “Time-series measurements of ch concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997).
[CrossRef]

Roy, S.

Samimy, M.

Schäfer, M.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

Schindler, K. P.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

Schlüter, H.

Schulz, C.

C. Schulz, B. Yip, V. Sick, and J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), p. PI05.

Seitzman, J. M.

J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef]

P. H. Paul, M. P. Lee, B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Application of planar laser-induced fluorescence imaging diagnostics to supersonic reacting flow,” 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, (American Institute for Aeronautics and Astronautics, 1990), paper  AIAA-90-1844.

Settersten, T. B.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Sick, V.

C. Schulz, B. Yip, V. Sick, and J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), p. PI05.

Slipchenko, M.

Slipchenko, M. N.

Stafast, H.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of oh radicals,” Appl. Phys. B 86, 1–5 (2007).
[CrossRef]

Steinberg, A.

A. Steinberg, I. Boxx, C. Arndt, J. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[CrossRef]

Steinberg, A. M.

A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010).
[CrossRef]

A. M. Steinberg, J. F. Driscoll, D. J. Micka, S. L. Ceccio, and C. D. Carter, “A cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” in Proceedings of 5th US Combust. Meeting (Curran Associates, 2007), pp. 672–682.

Stöhr, M.

M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst. 33, 2953–2960(2011).
[CrossRef]

A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010).
[CrossRef]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

Switzer, G. L.

Thurow, B.

Touzeau, M.

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

Triebel, W.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of oh radicals,” Appl. Phys. B 86, 1–5 (2007).
[CrossRef]

W. Paa, D. Müller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 58808, 58800N (2005).
[CrossRef]

Vialle, M.

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

Watson, K. A.

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Scalar and velocity field measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

Webster, M.

Wolfrum, J.

C. Schulz, B. Yip, V. Sick, and J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

Yip, B.

C. Schulz, B. Yip, V. Sick, and J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. B

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of oh radicals,” Appl. Phys. B 86, 1–5 (2007).
[CrossRef]

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007).
[CrossRef]

Chem. Phys. Lett.

C. Schulz, B. Yip, V. Sick, and J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

Combust. Flame

W. Kim, M. Godfrey Mungal, and M. A. Cappelli, “The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames,” Combust. Flame 157, 374–383 (2010).
[CrossRef]

M. W. Renfro, S. D. Pack, G. B. King, and N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Scalar and velocity field measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009).
[CrossRef]

A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010).
[CrossRef]

Combust. Sci. Technol.

C. S. Cooper and N. M. Laurendeau, “Short communication parametric study of no production in high-pressure, lean premixed-prevaporized spray flames,” Combust. Sci. Technol. 167, 311–318 (2001).
[CrossRef]

Exp. Fluids

I. Boxx, C. Arndt, C. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).
[CrossRef]

Flow Turbul. Combust.

R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow Turbul. Combust. 88, 503–527 (2012).
[CrossRef]

IEEE Trans. Plasma Sci.

B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995).
[CrossRef]

Y. D. Korolev and I. B. Matveev, “Nonsteady-state processes in a plasma pilot for ignition and flame control,” IEEE Trans. Plasma Sci. 34, 2507–2513 (2006).
[CrossRef]

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007).
[CrossRef]

Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009).
[CrossRef]

X. Rao, I. Matveev, and T. Lee, “Nitric oxide formation in a premixed flame with high-level plasma energy coupling,” IEEE Trans. Plasma Sci. 37, 2303–2313 (2009).
[CrossRef]

X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010).
[CrossRef]

J. Chem. Phys.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Opt. Lett.

Proc. Combust. Inst.

I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009).
[CrossRef]

A. Steinberg, I. Boxx, C. Arndt, J. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011).
[CrossRef]

M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst. 33, 2953–2960(2011).
[CrossRef]

W. Kim, H. Do, M. G. Mungal, and M. A. Cappelli, “Investigation of NO production and flame structure in plasma enhanced premixed combustion,” Proc. Combust. Inst. 31, 3319–3326 (2007).
[CrossRef]

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009).
[CrossRef]

Proc. SPIE

W. Paa, D. Müller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 58808, 58800N (2005).
[CrossRef]

Symp. (Int.) Combust., [Proc.]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992).
[CrossRef]

Other

P. H. Paul, M. P. Lee, B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Application of planar laser-induced fluorescence imaging diagnostics to supersonic reacting flow,” 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, (American Institute for Aeronautics and Astronautics, 1990), paper  AIAA-90-1844.

C. T. Bowman, “Gas-phase reaction mechanisms for nitrogen oxide formation and removal in combustion,” in Pollutants from Combustion, C. Vovelle, ed. (Kluwer, 2000), pp. 123–144.

W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), p. PI05.

A. M. Steinberg, J. F. Driscoll, D. J. Micka, S. L. Ceccio, and C. D. Carter, “A cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” in Proceedings of 5th US Combust. Meeting (Curran Associates, 2007), pp. 672–682.

K. Kohse-Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics, Combustion: An International Series (Taylor and Francis, 2002).

A. Bao, “Ignition of hydrocarbon fuels by a repetitively pulsed nanosecond pulse duration plasma,” thesis (Ohio State University, 2008).

Supplementary Material (3)

» Media 1: AVI (3873 KB)     
» Media 2: AVI (3570 KB)     
» Media 3: AVI (3958 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Laser diagnostics setup.

Fig. 2.
Fig. 2.

Diagram of DC plasma torch (left), and photographs of air-plasma (top right) and plasma-assisted flame (bottom right).

Fig. 3.
Fig. 3.

Photograph of static cell and fluorescence-collection devices for excitation scanning (top), a plot of the recorded excitation scan with target transitions marked (center), and LIFsim simulation (bottom).

Fig. 4.
Fig. 4.

Image sequences of NO-PLIF in an NO-seeded flow at 5 and 10 slpm containing 1% NO (Media 1).

Fig. 5.
Fig. 5.

Image sequences of NO-PLIF in a DC plasma torch air discharge at 400 and 800 mA (Media 2).

Fig. 6.
Fig. 6.

Image sequences of NO-PLIF in a plasma-ignited and stabilized flame at 400 and 800 mA (Media 3).

Fig. 7.
Fig. 7.

SNR for each of the three flow types studied, estimated from image regions of greatest signal. Error bars describe the typical spread over multiple images.

Fig. 8.
Fig. 8.

Signal profiles for a seeded flow, air-plasma discharge, and plasma-assisted flame with inset pictures marked to depict location of data extraction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR=μsignal/σRMS,

Metrics