Abstract

This study describes a phase-shifting method based on orthogonal polarized light by using complex Fourier domain optical coherence tomography (FD-OCT) to increase the speed of image scanning and to resist vibration and other environmental disturbances. Two FD-OCT interferograms corresponding to orthogonal polarization components can be obtained simultaneously. After using a π/2 phase-shifting algorithm, removing unwanted components becomes possible, including dc and autocorrelation terms, from the interferogram. This method doubles the measurement range. In other words, this approach enables one-shot and full-range FD-OCT. Experimental results show that the reconstruction parameters of the sample are close to the conventional time-domain optical coherence tomography.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
    [CrossRef]
  3. K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603–1606 (1987).
    [CrossRef]
  4. W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett. 17, 4–6 (1992).
    [CrossRef]
  5. J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
    [CrossRef]
  6. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [CrossRef]
  7. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28, 2201–2203 (2003).
    [CrossRef]
  8. E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
    [CrossRef]
  9. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One shot phase shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express 12, 6184–6191 (2004).
    [CrossRef]
  10. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, 1387–1392(2005).
    [CrossRef]
  11. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31, 362–364 (2006).
    [CrossRef]
  12. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31, 2426–2428 (2006).
    [CrossRef]
  13. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  14. K. Lee, P. Meemon, W. Dallas, K. Hsu, and J. P. Rolland, “Dual detection full range frequency domain optical coherence tomography,” Opt. Lett. 35, 1058–1060 (2010).
    [CrossRef]
  15. H. C. Cheng, J. F. Huang, and Y. H. Hsieh, “Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light,” Opt. Commun. 282, 3040–3045 (2009).
    [CrossRef]

2010 (1)

2009 (1)

H. C. Cheng, J. F. Huang, and Y. H. Hsieh, “Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light,” Opt. Commun. 282, 3040–3045 (2009).
[CrossRef]

2007 (1)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

2006 (2)

2005 (2)

2004 (1)

2003 (1)

2002 (1)

1993 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1987 (2)

Aoki, G.

Applegate, B. E.

Bajraszewski, T.

Bonner, R. F.

Bouma, B. E.

Carr, S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Cheng, H. C.

H. C. Cheng, J. F. Huang, and Y. H. Hsieh, “Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light,” Opt. Commun. 282, 3040–3045 (2009).
[CrossRef]

Chida, K.

Clivaz, W.

Dallas, W.

Davies, D. E. N.

Endo, T.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gilgen, H. H.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hayasaka, Y.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hitzenberger, C.

Hitzenberger, C. K.

Hsieh, Y. H.

H. C. Cheng, J. F. Huang, and Y. H. Hsieh, “Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light,” Opt. Commun. 282, 3040–3045 (2009).
[CrossRef]

Hsu, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huang, J. F.

H. C. Cheng, J. F. Huang, and Y. H. Hsieh, “Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light,” Opt. Commun. 282, 3040–3045 (2009).
[CrossRef]

Itoh, M.

Izatt, J. A.

Knuttel, A.

Kowalczyk, A.

Lee, K.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Makita, S.

Marquis-Weible, F.

Meemon, P.

Noda, J.

Novak, R. P.

Pircher, M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Rolland, J. P.

Salathe, R. P.

Sarunic, M. V.

Sato, M.

Schmitt, J. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sumimura, H.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Takada, K.

Tanno, N.

Tearney, G. J.

Vakoc, B. J.

Wang, R. K.

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

Watanabe, Y.

Wojtkowski, M.

Yasuno, Y.

Yatagai, T.

Yokohama, I.

Youngquist, R. C.

Yun, S. H.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

Opt. Commun. (1)

H. C. Cheng, J. F. Huang, and Y. H. Hsieh, “Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light,” Opt. Commun. 282, 3040–3045 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the proposed one-shot FD-OCT system. (SLD, super luminescent diode; P, polarization plate; BS, beam splitter; Q, quarter-wave plate; M, mirror; C, collimator; S, sample; and OSA, optical spectrum analyzer).

Fig. 2.
Fig. 2.

Interference pattern of sample in the TD-OCT system.

Fig. 3.
Fig. 3.

Conventional FD-OCT profile of the samples.

Fig. 4.
Fig. 4.

Experimental setup of proposed orthogonal polarized light based FD-OCT system.

Fig. 5.
Fig. 5.

(a) Zero path difference position between the front and the rear plane of slide 1 (b) between the rear plane of slide 1 and the front plane of slide 2.

Fig. 6.
Fig. 6.

(a) Zero path difference position between the front and the rear plane of slide 2 and (b) between the rear plane of slide 2 and the sample arm’s mirror.

Tables (1)

Tables Icon

Table 1. Comparison of the Reconstructed Results from Proposed FD-OCT and Conventional TD-OCT

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

FT1{I(v)}=Γrr(τ)+n{Γnn(τ)}+nm{Γ[τ+(τmτn)]+Γ[τ(τmτn)]}+n{Γ[τ+(τrτn)]+Γ[τ(τrτn)]},
cos(±2πvΔzc)FT12[δ(τΔzc)+δ(τ+Δzc)],
jcos(±2πvΔzc+π2)FT12[δ(τΔzc)±δ(τ+Δzc)],
I˜(v)=I(v)+jI(v,Δϕ=π2),
ΔS(τ)=|FT1{I˜(v)}||FT1{I˜*(v)}|=2nΓ[τ+(τrτn)]2nΓ[τ(τrτn)].
Ei(ω,t)=s(ω)exp[j(ωt+kz)],
Ei0(ω,t)=JQ(0°)JP(45°)Ei(ω,t)=exp(jπ4)(s(ω)exp[j(ωt+kz)]js(ω)exp[j(ωt+kz)]),
JQ(0°)=exp(jπ4)[100j],
JP(45°)=12[1111].
Er(ω,t)=JBJMJBEi0(ω,t)=12exp(jπ4)(s(ω)exp[j(ωt+kz)]js(ω)exp[j(ωt+kz)])=12exp(jπ4)(s(ω)exp[j(ωt+kz)]s(ω)exp[j(ωt+kz+π2)]),
JB=12[1001],
JM=[1001].
Es(ω,t)=JBJP(45°)JSJP(45°)JBEi0(ω,t)=14exp(jπ4)((1j)s(ω)H(ω)exp[j(ωt+kz)](1j)s(ω)H(ω)exp[j(ωt+kz)]),
JS=[H(ω)00H(ω)].
Ed(ω,t,Δz)=Er(ω,t,Δz)+Es(ω,t)=14exp(jπ4)(s(ω){2exp[j(ωt+kz+ϕ(Δz))]+(1j)H(ω)exp[j(ωt+kz)]}s(ω){2exp[j(ωt+kz+ϕ(Δz)+π2)]+(1j)H(ω)exp[j(ωt+kz)]}),
Edx(ω,t,Δz)=14exp(jπ4)s(ω){2exp[j(ωt+kz+ϕ(Δz))]+(1j)H(ω)exp[j(ωt+kz)]},
Edy(ω,t,Δz)=14exp(jπ4)s(ω){2exp[j(ωt+kz+ϕ(Δz)+π2)]+(1j)H(ω)exp[j(ωt+kz)]}.
Ii(ω,Δz)=Edi(ω,t,Δz)Edi*(ω,t,Δz)=Esi(ω,t)Esi*(ω,t)+Eri(ω,t,Δz)Eri*(ω,t,Δz)+2R{Esi(ω,t)Eri*(ω,t,Δz)},

Metrics