M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Reconstruction of fluorescence molecular tomography using a neighborhood regularization,” IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

M. Schweiger, O. Dorn, A. Zacharopoulos, I. Nissila, and S. R. Arridge, “3D level set reconstruction of model and experimental data in diffuse optical tomography,” Opt. Express 18, 150–164 (2010).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “In-vivo fluorescence molecular tomography based on optimal small animal surface reconstruction,” Chin. Opt. Lett. 8, 82–85 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and codeoptimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1, 658–675 (2010).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

H. Gao, H. Zhao, W. Cong, and G. Wang, “Bioluminescence tomography with Gaussian prior,” Biomed. Opt. Express 1, 1259–1277 (2010).

[CrossRef]

D. Hyde, E. L. Miller, D. H. Brooks, and V. Ntziachristos, “Data specific spatially varying regularization for multi-modal fluorescence molecular tomography,” IEEE Trans. Med. Imaging 29, 365–374 (2010).

[CrossRef]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods, and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).

[CrossRef]

D. Wang, X. Liu, F. Liu, and J. Bai, “Full-angle fluorescence diffuse optical tomography with spatially coded parallel excitation,” IEEE Trans. Inf. Technol. Biomed. 14, 1346–1354 (2010).

[CrossRef]

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48, 1328–1336 (2009).

[CrossRef]

D. Álvarez, P. Medina, and M. Moscoso, “Fluorescence lifetime imaging from time resolved measurements using a shape-based approach,” Opt. Express 17, 8843–8855 (2009).

[CrossRef]

A. Zacharopoulos, M. Schweiger, V. Kolehmainen, and S. Arridge, “3D shape based reconstruction of experimental data in diffuse optical tomography,” Opt. Express 17, 18940–18956 (2009).

[CrossRef]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]

G. Boverman, E. L. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans. Med. Imaging 27, 752–765 (2008).

[CrossRef]

S. Wang, and A. P. Dhawan, “Shape-based multi-spectral optical image reconstruction through genetic algorithm based optimization,” Comput. Med. Imaging Graph. 32, 429–441 (2008).

[CrossRef]

S. Babaeizadeh and D. H. Brooks, “Electrical impedance tomography for piecewise constant domains using boundary element shape-based inverse solutions,” IEEE Trans. Med. Imaging 26, 637–647 (2007).

[CrossRef]

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Medical Image Anal. 11, 389–399 (2007).

[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32, 382–384 (2007).

[CrossRef]

P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt. 46, 1679–1685 (2007).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique,” Opt. Lett. 31, 471–473 (2006).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532(2006).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).

[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).

[CrossRef]

M. E. Kilmer, E. L. Miller, A. Barbaro, and D. Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt. 42, 3129–3144 (2003).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite elementmethod for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

M. Schweiger, O. Dorn, A. Zacharopoulos, I. Nissila, and S. R. Arridge, “3D level set reconstruction of model and experimental data in diffuse optical tomography,” Opt. Express 18, 150–164 (2010).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532(2006).

[CrossRef]

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique,” Opt. Lett. 31, 471–473 (2006).

[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Deply, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite elementmethod for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

S. Babaeizadeh and D. H. Brooks, “Electrical impedance tomography for piecewise constant domains using boundary element shape-based inverse solutions,” IEEE Trans. Med. Imaging 26, 637–647 (2007).

[CrossRef]

M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Reconstruction of fluorescence molecular tomography using a neighborhood regularization,” IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012).

[CrossRef]

D. Wang, X. Liu, F. Liu, and J. Bai, “Full-angle fluorescence diffuse optical tomography with spatially coded parallel excitation,” IEEE Trans. Inf. Technol. Biomed. 14, 1346–1354 (2010).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “In-vivo fluorescence molecular tomography based on optimal small animal surface reconstruction,” Chin. Opt. Lett. 8, 82–85 (2010).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]

G. Boverman, E. L. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans. Med. Imaging 27, 752–765 (2008).

[CrossRef]

G. Boverman, E. L. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans. Med. Imaging 27, 752–765 (2008).

[CrossRef]

D. Hyde, E. L. Miller, D. H. Brooks, and V. Ntziachristos, “Data specific spatially varying regularization for multi-modal fluorescence molecular tomography,” IEEE Trans. Med. Imaging 29, 365–374 (2010).

[CrossRef]

G. Boverman, E. L. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans. Med. Imaging 27, 752–765 (2008).

[CrossRef]

S. Babaeizadeh and D. H. Brooks, “Electrical impedance tomography for piecewise constant domains using boundary element shape-based inverse solutions,” IEEE Trans. Med. Imaging 26, 637–647 (2007).

[CrossRef]

M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Reconstruction of fluorescence molecular tomography using a neighborhood regularization,” IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods, and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).

[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Deply, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite elementmethod for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

S. Wang, and A. P. Dhawan, “Shape-based multi-spectral optical image reconstruction through genetic algorithm based optimization,” Comput. Med. Imaging Graph. 32, 429–441 (2008).

[CrossRef]

M. Schweiger, O. Dorn, A. Zacharopoulos, I. Nissila, and S. R. Arridge, “3D level set reconstruction of model and experimental data in diffuse optical tomography,” Opt. Express 18, 150–164 (2010).

[CrossRef]

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique,” Opt. Lett. 31, 471–473 (2006).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532(2006).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]

G. Boverman, E. L. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans. Med. Imaging 27, 752–765 (2008).

[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite elementmethod for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

D. Hyde, E. L. Miller, D. H. Brooks, and V. Ntziachristos, “Data specific spatially varying regularization for multi-modal fluorescence molecular tomography,” IEEE Trans. Med. Imaging 29, 365–374 (2010).

[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32, 382–384 (2007).

[CrossRef]

G. Boverman, E. L. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans. Med. Imaging 27, 752–765 (2008).

[CrossRef]

A. Kak and M. Slaney, Computerized Tomographic Imaging (IEEE, 1987).

A. Zacharopoulos, M. Schweiger, V. Kolehmainen, and S. Arridge, “3D shape based reconstruction of experimental data in diffuse optical tomography,” Opt. Express 17, 18940–18956 (2009).

[CrossRef]

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique,” Opt. Lett. 31, 471–473 (2006).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532(2006).

[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32, 382–384 (2007).

[CrossRef]

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Medical Image Anal. 11, 389–399 (2007).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods, and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Reconstruction of fluorescence molecular tomography using a neighborhood regularization,” IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Reconstruction of fluorescence molecular tomography using a neighborhood regularization,” IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012).

[CrossRef]

D. Wang, X. Liu, F. Liu, and J. Bai, “Full-angle fluorescence diffuse optical tomography with spatially coded parallel excitation,” IEEE Trans. Inf. Technol. Biomed. 14, 1346–1354 (2010).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “In-vivo fluorescence molecular tomography based on optimal small animal surface reconstruction,” Chin. Opt. Lett. 8, 82–85 (2010).

[CrossRef]

D. Wang, X. Liu, F. Liu, and J. Bai, “Full-angle fluorescence diffuse optical tomography with spatially coded parallel excitation,” IEEE Trans. Inf. Technol. Biomed. 14, 1346–1354 (2010).

[CrossRef]

M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Reconstruction of fluorescence molecular tomography using a neighborhood regularization,” IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

D. Hyde, E. L. Miller, D. H. Brooks, and V. Ntziachristos, “Data specific spatially varying regularization for multi-modal fluorescence molecular tomography,” IEEE Trans. Med. Imaging 29, 365–374 (2010).

[CrossRef]

G. Boverman, E. L. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans. Med. Imaging 27, 752–765 (2008).

[CrossRef]

M. E. Kilmer, E. L. Miller, A. Barbaro, and D. Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt. 42, 3129–3144 (2003).

[CrossRef]

D. Hyde, E. L. Miller, D. H. Brooks, and V. Ntziachristos, “Data specific spatially varying regularization for multi-modal fluorescence molecular tomography,” IEEE Trans. Med. Imaging 29, 365–374 (2010).

[CrossRef]

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Medical Image Anal. 11, 389–399 (2007).

[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32, 382–384 (2007).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).

[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).

[CrossRef]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods, and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32, 382–384 (2007).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).

[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).

[CrossRef]

M. Schweiger, O. Dorn, A. Zacharopoulos, I. Nissila, and S. R. Arridge, “3D level set reconstruction of model and experimental data in diffuse optical tomography,” Opt. Express 18, 150–164 (2010).

[CrossRef]

A. Zacharopoulos, M. Schweiger, V. Kolehmainen, and S. Arridge, “3D shape based reconstruction of experimental data in diffuse optical tomography,” Opt. Express 17, 18940–18956 (2009).

[CrossRef]

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique,” Opt. Lett. 31, 471–473 (2006).

[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Deply, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite elementmethod for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532(2006).

[CrossRef]

A. Kak and M. Slaney, Computerized Tomographic Imaging (IEEE, 1987).

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32, 382–384 (2007).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods, and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).

[CrossRef]

P. Venkataraman, Applied Optimization with Matlab Programming (Wiley, 2002).

D. Wang, X. Liu, F. Liu, and J. Bai, “Full-angle fluorescence diffuse optical tomography with spatially coded parallel excitation,” IEEE Trans. Inf. Technol. Biomed. 14, 1346–1354 (2010).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “In-vivo fluorescence molecular tomography based on optimal small animal surface reconstruction,” Chin. Opt. Lett. 8, 82–85 (2010).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

S. Wang, and A. P. Dhawan, “Shape-based multi-spectral optical image reconstruction through genetic algorithm based optimization,” Comput. Med. Imaging Graph. 32, 429–441 (2008).

[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

M. Schweiger, O. Dorn, A. Zacharopoulos, I. Nissila, and S. R. Arridge, “3D level set reconstruction of model and experimental data in diffuse optical tomography,” Opt. Express 18, 150–164 (2010).

[CrossRef]

A. Zacharopoulos, M. Schweiger, V. Kolehmainen, and S. Arridge, “3D shape based reconstruction of experimental data in diffuse optical tomography,” Opt. Express 17, 18940–18956 (2009).

[CrossRef]

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique,” Opt. Lett. 31, 471–473 (2006).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532(2006).

[CrossRef]

M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Reconstruction of fluorescence molecular tomography using a neighborhood regularization,” IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

M. E. Kilmer, E. L. Miller, A. Barbaro, and D. Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt. 42, 3129–3144 (2003).

[CrossRef]

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48, 1328–1336 (2009).

[CrossRef]

P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt. 46, 1679–1685 (2007).

[CrossRef]

E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and codeoptimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1, 658–675 (2010).

[CrossRef]

H. Gao, H. Zhao, W. Cong, and G. Wang, “Bioluminescence tomography with Gaussian prior,” Biomed. Opt. Express 1, 1259–1277 (2010).

[CrossRef]

S. Wang, and A. P. Dhawan, “Shape-based multi-spectral optical image reconstruction through genetic algorithm based optimization,” Comput. Med. Imaging Graph. 32, 429–441 (2008).

[CrossRef]

M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Reconstruction of fluorescence molecular tomography using a neighborhood regularization,” IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012).

[CrossRef]

D. Wang, X. Liu, F. Liu, and J. Bai, “Full-angle fluorescence diffuse optical tomography with spatially coded parallel excitation,” IEEE Trans. Inf. Technol. Biomed. 14, 1346–1354 (2010).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).

[CrossRef]

G. Boverman, E. L. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans. Med. Imaging 27, 752–765 (2008).

[CrossRef]

D. Hyde, E. L. Miller, D. H. Brooks, and V. Ntziachristos, “Data specific spatially varying regularization for multi-modal fluorescence molecular tomography,” IEEE Trans. Med. Imaging 29, 365–374 (2010).

[CrossRef]

S. Babaeizadeh and D. H. Brooks, “Electrical impedance tomography for piecewise constant domains using boundary element shape-based inverse solutions,” IEEE Trans. Med. Imaging 26, 637–647 (2007).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532(2006).

[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Deply, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).

[CrossRef]

K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, and J. Tian, “Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy,” J. Opt. Soc. Am. A 27, 1413–1423 (2010).

[CrossRef]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods, and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite elementmethod for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).

[CrossRef]

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Medical Image Anal. 11, 389–399 (2007).

[CrossRef]

D. Álvarez, P. Medina, and M. Moscoso, “Fluorescence lifetime imaging from time resolved measurements using a shape-based approach,” Opt. Express 17, 8843–8855 (2009).

[CrossRef]

A. Zacharopoulos, M. Schweiger, V. Kolehmainen, and S. Arridge, “3D shape based reconstruction of experimental data in diffuse optical tomography,” Opt. Express 17, 18940–18956 (2009).

[CrossRef]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]

M. Schweiger, O. Dorn, A. Zacharopoulos, I. Nissila, and S. R. Arridge, “3D level set reconstruction of model and experimental data in diffuse optical tomography,” Opt. Express 18, 150–164 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

B. Zhang, X. Yang, F. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 20201–20214 (2010).

[CrossRef]

A. Sassaroli, “Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media,” Opt. Lett. 36, 2095–2097 (2011).

[CrossRef]

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique,” Opt. Lett. 31, 471–473 (2006).

[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32, 382–384 (2007).

[CrossRef]

J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol. 57, 1459–1476 (2012).

[CrossRef]

P. Venkataraman, Applied Optimization with Matlab Programming (Wiley, 2002).

NVIDIA Corporation, NVIDIA CUDA C Programming Guide 4.0 (2011).

NVIDIA Corporation, NVIDIA’s Next Generation CUDA Compute Architecture: Fermi (2010).

NVIDIA Corporation, CUDA Toolkit 4.0 CUBLAS Library (2011).

A. Kak and M. Slaney, Computerized Tomographic Imaging (IEEE, 1987).