Abstract

The laser-induced damage to antireflective coatings on Yb:YAG crystals under different temperatures was investigated. An optical profiler, field-emission scanning-electron microscopy, and a step profiler were used to determine the damage morphology, including size and depth. The results show that there is about 5J/cm2 decrease in the laser-induced damage threshold of cryogenic conditions compared to that of room temperature in 1-on-1 test mode, and a 3J/cm2 decrease in 100-on-1 mode. There is an accumulation effect in both cases. Meanwhile, the damage areas and depths are also much larger under cryogenic conditions. The precipitation of the subsurface defects in the substrate and the thermal stress in the interface between the film and the substrate under cryogenic conditions are considered to be the key factors in the unique damage behaviors.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brunner, R. Paschotta, J. Aus der Au, G. J. Spuhler, F. Morier-Genoud, R. Hovel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “Widely tunable pulse durations from a passively mode-locked thin-disk Yb:YAG laser,” Opt. Lett. 26, 379–381 (2001).
    [CrossRef]
  2. J. A. der Au, G. J. Spuhler, T. Sudmeyer, R. Paschotta, R. Hovel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25, 859–861 (2000).
    [CrossRef]
  3. T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-3-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (1992).
    [CrossRef]
  4. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
    [CrossRef]
  5. C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
    [CrossRef]
  6. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
    [CrossRef]
  7. J. L. Wang, Z. H. Zhang, X. J. Cheng, L. Li, X. C. Shi, X. L. Zhu, and W. B. Chen, “Study of diode-pumped Yb:YAG disk lasers at low temperature,” Chin. Opt. Lett. 9, 111403 (2011).
    [CrossRef]
  8. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165 W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29, 2154–2156 (2004).
    [CrossRef]
  9. W. T. Feng and Y. X. Yan, “Shift in infrared interference filters at cryogenic temperature,” Appl. Opt. 31, 6591–6592 (1992).
    [CrossRef]
  10. W. T. Feng and Y. X. Yan, “Spectral performance of multilayer filers at cryogenic temperature,” Proc. SPIE 1765, 131–135 (1993).
    [CrossRef]
  11. W. E. Johnson, B. P. Edmonds, and M. J. Wolf, “Environmental stability of rugate filters: in-situ measurements of their spectral properties,” Proc. SPIE 3425, 85–91 (1998).
  12. J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow-band IR filters containing PbTe, 4–20 microns,” Proc. SPIE 246, 83–94 (1980).
  13. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
    [CrossRef]
  14. J. Oulehla, and P. Pokorny, “AR coatings on laser crystals for HiPER project,” Proc. SPIE 7786, 778614i (2010).
  15. K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE 8190, 81900A (2011).
  16. J. Capoulade and L. Gallais, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47, 5272–5280 (2002).
  17. J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
    [CrossRef]

2011

K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE 8190, 81900A (2011).

J. L. Wang, Z. H. Zhang, X. J. Cheng, L. Li, X. C. Shi, X. L. Zhu, and W. B. Chen, “Study of diode-pumped Yb:YAG disk lasers at low temperature,” Chin. Opt. Lett. 9, 111403 (2011).
[CrossRef]

2010

J. Oulehla, and P. Pokorny, “AR coatings on laser crystals for HiPER project,” Proc. SPIE 7786, 778614i (2010).

2004

2002

2001

2000

1999

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

1998

W. E. Johnson, B. P. Edmonds, and M. J. Wolf, “Environmental stability of rugate filters: in-situ measurements of their spectral properties,” Proc. SPIE 3425, 85–91 (1998).

1995

1993

W. T. Feng and Y. X. Yan, “Spectral performance of multilayer filers at cryogenic temperature,” Proc. SPIE 1765, 131–135 (1993).
[CrossRef]

1992

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-3-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (1992).
[CrossRef]

W. T. Feng and Y. X. Yan, “Shift in infrared interference filters at cryogenic temperature,” Appl. Opt. 31, 6591–6592 (1992).
[CrossRef]

1991

1980

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow-band IR filters containing PbTe, 4–20 microns,” Proc. SPIE 246, 83–94 (1980).

Aggarwal, R. L.

Akhouayri, H.

Amra, C.

Aus der Au, J.

Avizonis, P. V.

Beach, R. J.

Biswal, S.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Braun, A.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Brunner, F.

Capoulade, J.

Chen, W. B.

Cheng, X. J.

Choi, H. K.

der Au, J. A.

Edmonds, B. P.

W. E. Johnson, B. P. Edmonds, and M. J. Wolf, “Environmental stability of rugate filters: in-situ measurements of their spectral properties,” Proc. SPIE 3425, 85–91 (1998).

Emanuel, M. A.

Erhard, S.

Fan, T. Y.

Feng, W. T.

W. T. Feng and Y. X. Yan, “Spectral performance of multilayer filers at cryogenic temperature,” Proc. SPIE 1765, 131–135 (1993).
[CrossRef]

W. T. Feng and Y. X. Yan, “Shift in infrared interference filters at cryogenic temperature,” Appl. Opt. 31, 6591–6592 (1992).
[CrossRef]

Fujita, M.

K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE 8190, 81900A (2011).

Gallais, L.

Giesen, A.

Graf, M.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Harris, D. G.

Honea, E. C.

Honninger, C.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Hovel, R.

Hunneman, R.

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow-band IR filters containing PbTe, 4–20 microns,” Proc. SPIE 246, 83–94 (1980).

Jitsuno, T.

K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE 8190, 81900A (2011).

Johannsen, I.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Johnson, W. E.

W. E. Johnson, B. P. Edmonds, and M. J. Wolf, “Environmental stability of rugate filters: in-situ measurements of their spectral properties,” Proc. SPIE 3425, 85–91 (1998).

Karszewski, M.

Keller, U.

Lacovara, P.

Li, L.

Mikami, K.

K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE 8190, 81900A (2011).

Mitchell, S. C.

Monroe, R. S.

Morier-Genoud, F.

F. Brunner, R. Paschotta, J. Aus der Au, G. J. Spuhler, F. Morier-Genoud, R. Hovel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “Widely tunable pulse durations from a passively mode-locked thin-disk Yb:YAG laser,” Opt. Lett. 26, 379–381 (2001).
[CrossRef]

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Moser, M.

Motokoshi, S.

K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE 8190, 81900A (2011).

Mourou, G. A.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Natoli, J. Y.

Nees, J.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Ochoa, J. R.

Oulehla, J.

J. Oulehla, and P. Pokorny, “AR coatings on laser crystals for HiPER project,” Proc. SPIE 7786, 778614i (2010).

Paschotta, R.

Payne, S. A.

Pokorny, P.

J. Oulehla, and P. Pokorny, “AR coatings on laser crystals for HiPER project,” Proc. SPIE 7786, 778614i (2010).

Ripin, D. J.

Seeber, W.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Seeley, J. S.

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow-band IR filters containing PbTe, 4–20 microns,” Proc. SPIE 246, 83–94 (1980).

Shi, X. C.

Skidmore, J. A.

Spuhler, G. J.

Sudmeyer, T.

Sutton, S. B.

Takashashi, H.

Tanaka, K. A.

K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE 8190, 81900A (2011).

Wang, C. A.

Wang, J. L.

Whatley, A.

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow-band IR filters containing PbTe, 4–20 microns,” Proc. SPIE 246, 83–94 (1980).

Wolf, M. J.

W. E. Johnson, B. P. Edmonds, and M. J. Wolf, “Environmental stability of rugate filters: in-situ measurements of their spectral properties,” Proc. SPIE 3425, 85–91 (1998).

Yan, Y. X.

W. T. Feng and Y. X. Yan, “Spectral performance of multilayer filers at cryogenic temperature,” Proc. SPIE 1765, 131–135 (1993).
[CrossRef]

W. T. Feng and Y. X. Yan, “Shift in infrared interference filters at cryogenic temperature,” Appl. Opt. 31, 6591–6592 (1992).
[CrossRef]

Zhang, G.

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Zhang, Z. H.

Zhu, X. L.

Appl. Opt.

Appl. Phys. B

C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999).
[CrossRef]

Chin. Opt. Lett.

IEEE J. Quantum Electron.

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-3-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (1992).
[CrossRef]

Opt. Lett.

Proc. SPIE

W. T. Feng and Y. X. Yan, “Spectral performance of multilayer filers at cryogenic temperature,” Proc. SPIE 1765, 131–135 (1993).
[CrossRef]

W. E. Johnson, B. P. Edmonds, and M. J. Wolf, “Environmental stability of rugate filters: in-situ measurements of their spectral properties,” Proc. SPIE 3425, 85–91 (1998).

J. S. Seeley, R. Hunneman, and A. Whatley, “Temperature-invariant and other narrow-band IR filters containing PbTe, 4–20 microns,” Proc. SPIE 246, 83–94 (1980).

J. Oulehla, and P. Pokorny, “AR coatings on laser crystals for HiPER project,” Proc. SPIE 7786, 778614i (2010).

K. Mikami, S. Motokoshi, M. Fujita, T. Jitsuno, and K. A. Tanaka, “Laser-induced damage thresholds of optical coatings at different temperature,” Proc. SPIE 8190, 81900A (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Measurement setup of laser-induced damage.

Fig. 2.
Fig. 2.

Test of damage probability at room temperature and cryogenic condition.

Fig. 3.
Fig. 3.

Damage morphology irradiated under (a) room temperature and (b) cryogenic condition.

Fig. 4.
Fig. 4.

Depths of damage irradiated at (a) room temperature and (b) cryogenic condition.

Fig. 5.
Fig. 5.

Test of damage probability at room temperature and cryogenic condition.

Fig. 6.
Fig. 6.

Damage morphology irradiated under (a) room temperature and (b) cryogenic condition.

Fig. 7.
Fig. 7.

Depths of pits on coatings irradiated at (a) room temperature and (b) cryogenic condition.

Fig. 8.
Fig. 8.

AFM images of Yb:YAG substrate: (a) before cooling and (b) after cooling.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P(f)=1(ft)(πdω2/2),
Ssp=(Esp1νsp)(αpαs)ΔT,
Ssf=(Esf1νsf)(αfαs)ΔT,

Metrics