Abstract

Applications of computational manufacturing experiments (CMEs) for selection of the most manufacturable designs among a variety of different design solutions are demonstrated. We compare design solutions with respect to estimations of their production yields. Computational experiments are performed using two simulation software tools. In the course of CMEs, we take into account all major factors causing errors in our deposition process. Real deposition experiments are in agreement with CMEs; the most manufacturable design exhibits better target performances compared to other designs.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kruschwitz, “Software tools speed optical thin-film design,” Laser Focus World 39, 157–166 (2003).
  2. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
    [CrossRef]
  3. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007).
    [CrossRef]
  4. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
    [CrossRef]
  5. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51, 7319–7332 (2012).
    [CrossRef]
  6. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
    [CrossRef]
  7. A. Tikhonravov, M. Trubetskov, and I. Kasahara, “Achievements and challenges in the design and production of high quality optical coatings,” IEICE Trans. Electron. E91-C, 1622–1629 (2008).
    [CrossRef]
  8. A. V. Tikhonravov and M. K. Trubetskov, “Design opportunities for better manufacturability,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), p. WA2.
  9. A. V. Tikhonravov and M. K. Trubetskov, “Modern status and prospects of the development of methods of designing multilayer optical coatings,” J. Opt. Technol. 74, 845–850 (2007).
    [CrossRef]
  10. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for choosing of a practically optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
    [CrossRef]
  11. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
    [CrossRef]
  12. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007).
    [CrossRef]
  13. B. Vidal, A. Fornier, and E. Pelletier, “Optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 17, 1038–1047 (1978).
    [CrossRef]
  14. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production using broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006).
    [CrossRef]
  15. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA3.
  16. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA5.
  17. K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
    [CrossRef]
  18. D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
    [CrossRef]
  19. M. Tilsch, K. Hendrix, and P. Verly, “Optical interference coating design contest 2004,” Appl. Opt. 45, 1544–1554(2006).
    [CrossRef]
  20. H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Hybrid process control for precision optics enhanced by computational manufacturing,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuC6.
  21. O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).
    [CrossRef]
  22. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
    [CrossRef]
  23. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .
  24. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
    [CrossRef]
  25. O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
    [CrossRef]
  26. A. Zoeller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).
    [CrossRef]
  27. T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
    [CrossRef]
  28. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
    [CrossRef]
  29. S. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).
  30. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and re-engineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
    [CrossRef]
  31. H. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
    [CrossRef]
  32. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
    [CrossRef]
  33. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
    [CrossRef]
  34. A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
    [CrossRef]
  35. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
    [CrossRef]
  36. A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
    [CrossRef]

2012

2011

2010

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
[CrossRef]

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).
[CrossRef]

2008

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

A. Zoeller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).
[CrossRef]

A. Tikhonravov, M. Trubetskov, and I. Kasahara, “Achievements and challenges in the design and production of high quality optical coatings,” IEICE Trans. Electron. E91-C, 1622–1629 (2008).
[CrossRef]

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and re-engineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

2007

2006

2005

2004

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

2003

J. Kruschwitz, “Software tools speed optical thin-film design,” Laser Focus World 39, 157–166 (2003).

1996

1992

1981

1978

Amotchkina, T. V.

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for choosing of a practically optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production using broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA3.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA5.

Badoil, B.

Boos, M.

A. Zoeller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).
[CrossRef]

Cathelinaud, M.

DeBell, G.

DeBell, G. W.

Dobrowolski, J. A.

Ehlers, H.

Fasold, D.

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

Fornier, A.

Francis, R.

Friedrich, K.

Furman, S.

S. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).

Grilli, M. L.

Gross, T.

Hagedorn, H.

A. Zoeller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).
[CrossRef]

Hendrix, K.

Hoffmann, K.

Janicki, V.

Kaiser, N.

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
[CrossRef]

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).
[CrossRef]

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and re-engineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

Kasahara, I.

A. Tikhonravov, M. Trubetskov, and I. Kasahara, “Achievements and challenges in the design and production of high quality optical coatings,” IEICE Trans. Electron. E91-C, 1622–1629 (2008).
[CrossRef]

Kokarev, M. A.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

Kruschwitz, J.

J. Kruschwitz, “Software tools speed optical thin-film design,” Laser Focus World 39, 157–166 (2003).

Lappschies, M.

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef]

Lemarchand, F.

Lequime, M.

Macleod, H.

Pelletier, E.

Pervak, V.

Ristau, D.

Romanov, B.

A. Zoeller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).
[CrossRef]

Sancho-Parramon, J.

Schlichting, S.

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Hybrid process control for precision optics enhanced by computational manufacturing,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuC6.

Schmitz, C.

H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Hybrid process control for precision optics enhanced by computational manufacturing,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuC6.

Stenzel, O.

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).
[CrossRef]

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and re-engineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

Sullivan, B. T.

Sytchkova, A. K.

Tikhonravov, A.

A. Tikhonravov, M. Trubetskov, and I. Kasahara, “Achievements and challenges in the design and production of high quality optical coatings,” IEICE Trans. Electron. E91-C, 1622–1629 (2008).
[CrossRef]

Tikhonravov, A. V.

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51, 7319–7332 (2012).
[CrossRef]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for choosing of a practically optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and re-engineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Modern status and prospects of the development of methods of designing multilayer optical coatings,” J. Opt. Technol. 74, 845–850 (2007).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production using broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Design opportunities for better manufacturability,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), p. WA2.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA3.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA5.

S. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .

Tilsch, M.

Trubetskov, M.

A. Tikhonravov, M. Trubetskov, and I. Kasahara, “Achievements and challenges in the design and production of high quality optical coatings,” IEICE Trans. Electron. E91-C, 1622–1629 (2008).
[CrossRef]

Trubetskov, M. K.

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51, 7319–7332 (2012).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for choosing of a practically optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and re-engineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Modern status and prospects of the development of methods of designing multilayer optical coatings,” J. Opt. Technol. 74, 845–850 (2007).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production using broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Design opportunities for better manufacturability,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), p. WA2.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA5.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA3.

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .

Verly, P.

Vidal, B.

Wilbrandt, S.

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
[CrossRef]

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).
[CrossRef]

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and re-engineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

Zoeller, A.

A. Zoeller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).
[CrossRef]

Zorc, H.

Appl. Opt.

B. Vidal, A. Fornier, and E. Pelletier, “Optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 17, 1038–1047 (1978).
[CrossRef]

H. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef]

B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
[CrossRef]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef]

M. Tilsch, K. Hendrix, and P. Verly, “Optical interference coating design contest 2004,” Appl. Opt. 45, 1544–1554(2006).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production using broadband optical monitoring,” Appl. Opt. 45, 7026–7034 (2006).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46, 704–710 (2007).
[CrossRef]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46, 4294–4303 (2007).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and re-engineering of interference coatings,” Appl. Opt. 47, C49–C54 (2008).
[CrossRef]

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49, 3150–3162 (2010).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for choosing of a practically optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, and A. V. Tikhonravov, “Design, production and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50, 6468–6475 (2011).
[CrossRef]

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, “Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51, 7319–7332 (2012).
[CrossRef]

T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, and D. Ristau, “Computational manufacturing as a key element in design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2012).
[CrossRef]

IEICE Trans. Electron.

A. Tikhonravov, M. Trubetskov, and I. Kasahara, “Achievements and challenges in the design and production of high quality optical coatings,” IEICE Trans. Electron. E91-C, 1622–1629 (2008).
[CrossRef]

J. Opt. A

O. Stenzel, S. Wilbrandt, D. Fasold, and N. Kaiser, “A hybrid in situ monitoring strategy for optical coating deposition: application to the preparation of chirped dielectric mirrors,” J. Opt. A 10, 085305 (2008).
[CrossRef]

J. Opt. Technol.

Laser Focus World

J. Kruschwitz, “Software tools speed optical thin-film design,” Laser Focus World 39, 157–166 (2003).

Opt. Express

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

Proc. SPIE

A. Zoeller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004).
[CrossRef]

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

Other

H. Ehlers, S. Schlichting, C. Schmitz, and D. Ristau, “Hybrid process control for precision optics enhanced by computational manufacturing,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuC6.

A. V. Tikhonravov and M. K. Trubetskov, “Design opportunities for better manufacturability,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), p. WA2.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA3.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” in Optical Interference Coatings, Technical Digest (CD) (Optical Society of America, 2011), paper TuA5.

S. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Edition Frontieres, 1992).

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of modern design-production chain.

Fig. 2.
Fig. 2.

Nominal refractive indices of TiO 2 (left side) and SiO 2 (right side). Dashed curves indicate refractive indices of TiO 2 and SiO 2 determined in the course of a reverse engineering (RE) procedure from experimental data related to four produced test coatings [27]. Marked curves show the refractive index of TiO 2 film produced by IBS [33] and the refractive index of SiO 2 film produced by e -beam evaporation [34].

Fig. 3.
Fig. 3.

Comparison of theoretical (black curves) and experimental (crosses) normal-incidence transmittance data related to produced designs.

Fig. 4.
Fig. 4.

Sample EF7–Run1, AOI = 45 ° : comparison of theoretical reflectance and transmittance (black and gray curves) with experimental reflectance and transmittance (crosses). Dashed horizontal lines indicate range targets.

Fig. 5.
Fig. 5.

Sample EF8–Run1, AOI = 45 ° : comparison of theoretical reflectance and transmittance (black and gray curves) with experimental reflectance and transmittance (crosses). Dashed horizontal lines indicate range targets.

Fig. 6.
Fig. 6.

Sample EF2–Run1, AOI = 45 ° : comparison of theoretical reflectance and transmittance (black and gray curves) with experimental reflectance and transmittance (crosses). Dashed horizontal lines indicate range targets.

Fig. 7.
Fig. 7.

Sample EF10–Run1, AOI = 45 ° : comparison of theoretical reflectance and transmittance (black and gray curves) with experimental reflectance and transmittance (crosses). Dashed horizontal lines indicate range targets.

Tables (5)

Tables Icon

Table 1. Structures of the Design Solutions EF1–EF5

Tables Icon

Table 2. Structures of the Design Solutions EF6–EF10

Tables Icon

Table 3. Principle Parameters of the Obtained Design Solutions

Tables Icon

Table 4. Production Yields Estimated with the Help of BBM OL

Tables Icon

Table 5. Comparison of Discrepancy Values Calculated for Experimental Samples

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ ) = 1 + A 1 λ 2 λ 2 A 2 + A 3 λ 2 λ 2 A 4 ,
MF = { 1 3 L 1 k = 1 3 j = 1 L 1 [ R ( λ j , θ k ) 100 % ] 2 + 1 3 L 2 k = 1 3 j = 1 L 2 [ T ( λ j , θ k ) 100 % ] 2 } 1 / 2 ,
DF ( d ( t ) ) = ( 1 L j = 1 L [ T ( d 1 , , d i - 1 , d ( t ) , λ j ) T ^ ( λ j ) ] 2 ) 1 / 2
DF 0 = ( 1 L j = 1 L [ T ( λ j ) T ^ ( λ j ) ] 2 ) 1 / 2 ,
GDF = ( 1 N L k = 1 N j = 1 L [ T ( k ) ( λ j ) T ^ ( k ) ( λ j ) ] 2 ) 1 / 2 ,
DF t = ( 1 L 1 { λ j } 1 [ R ^ ( λ j ) 100 % ] 2 + 1 L 2 { λ j } 2 [ T ^ ( λ j ) 100 % ] 2 ) 1 / 2 ,

Metrics