Abstract

This paper presents what is to our knowledge the first evaluation of laser-induced breakdown spectroscopy (LIBS) studies on elemental composition detection and identification by employing a femtosecond (fs) fiber laser. Qualitative LIBS spectra were obtained in ambient air using a 1030 nm fs fiber laser. Specific ion and neutral emission lines of different materials have been characterized, including metal, metal alloy, semiconductor, and glass. The performance and LIBS spectra of an intensified CCD (ICCD) system and a nonintensified CCD system were compared. Time-resolved emission spectra depicting the detailed plasma evolution was collected from sub-spot-size craters. The gated ICCD gives improved signal-to-noise ratio by a factor of 20 compared with a nongated, nonintensified CCD system. This shows a potential portable and field-deployable LIBS system for versatile and rapid analysis of chemicals and special materials.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000).
    [CrossRef]
  2. D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118–251113 (2007).
    [CrossRef]
  3. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
    [CrossRef]
  4. C. Geertsen, J. L. Lacour, P. Mauchien, and L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
    [CrossRef]
  5. H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004).
    [CrossRef]
  6. R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
    [CrossRef]
  7. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
    [CrossRef]
  8. A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
    [CrossRef]
  9. A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43, 5399–5403 (2004).
    [CrossRef]
  10. A. Ball, V. Hohreiter, and D. Hahn, “Hydrogen leak detection using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 59, 348–353 (2005).
    [CrossRef]
  11. M. Tran, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455–1461 (2001).
    [CrossRef]
  12. F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17, 419–425(2009).
    [CrossRef]
  13. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121(2008).
    [CrossRef]
  14. C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).
  15. Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16, 5332–5337 (2008).
    [CrossRef]
  16. K. Amal, S. Elnaby, V. Palleschi, A. Salvetti, and M. Harith, “Comparison between single-and double-pulse LIBS at different air pressures on silicon target,” Appl. Phys. B 83, 651–657 (2006).
    [CrossRef]
  17. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181 (1999).
    [CrossRef]
  18. M. E. Asgill, M. S. Brown, K. Frische, W. M. Roquemore, and D. W. Hahn, “Double-pulse and single-pulse laser-induced breakdown spectroscopy for distinguishing between gaseous and particulate phase analytes,” Appl. Opt. 49, C110–C119 (2010).
    [CrossRef]
  19. B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. Johnston, S. Laville, and F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy,” Appl. Spectrosc. 58, 122–129 (2004).
    [CrossRef]
  20. A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
    [CrossRef]
  21. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
    [CrossRef]
  22. M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010).
    [CrossRef]
  23. M. Baudelet, C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 microm thulium fiber laser,” Opt. Express 18, 7905 (2010).
    [CrossRef]
  24. J. F. Y. Gravel, F. R. Doucet, P. Bouchard, and M. Sabsabi, “Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26, 1354–1361 (2011).
    [CrossRef]
  25. B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001).
    [CrossRef]
  26. J. E. Carranza, E. Gibb, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6016–6021 (2003).
    [CrossRef]
  27. S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys. A 69, S395–S398 (1999).
    [CrossRef]
  28. H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
    [CrossRef]
  29. M. Sabsabi, R. Heon, and L. St-Onge, “Critical evaluation of gated CCD detectors for laser-induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 60, 1211–1216 (2005).
    [CrossRef]

2011 (1)

J. F. Y. Gravel, F. R. Doucet, P. Bouchard, and M. Sabsabi, “Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26, 1354–1361 (2011).
[CrossRef]

2010 (3)

2009 (3)

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17, 419–425(2009).
[CrossRef]

C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).

2008 (2)

2007 (1)

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118–251113 (2007).
[CrossRef]

2006 (2)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
[CrossRef]

K. Amal, S. Elnaby, V. Palleschi, A. Salvetti, and M. Harith, “Comparison between single-and double-pulse LIBS at different air pressures on silicon target,” Appl. Phys. B 83, 651–657 (2006).
[CrossRef]

2005 (2)

A. Ball, V. Hohreiter, and D. Hahn, “Hydrogen leak detection using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 59, 348–353 (2005).
[CrossRef]

M. Sabsabi, R. Heon, and L. St-Onge, “Critical evaluation of gated CCD detectors for laser-induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 60, 1211–1216 (2005).
[CrossRef]

2004 (3)

2003 (2)

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

J. E. Carranza, E. Gibb, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6016–6021 (2003).
[CrossRef]

2001 (3)

2000 (1)

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000).
[CrossRef]

1999 (3)

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181 (1999).
[CrossRef]

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys. A 69, S395–S398 (1999).
[CrossRef]

1998 (1)

1996 (1)

C. Geertsen, J. L. Lacour, P. Mauchien, and L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

1995 (1)

Amal, K.

K. Amal, S. Elnaby, V. Palleschi, A. Salvetti, and M. Harith, “Comparison between single-and double-pulse LIBS at different air pressures on silicon target,” Appl. Phys. B 83, 651–657 (2006).
[CrossRef]

Amodeo, T.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
[CrossRef]

Asgill, M. E.

Assion, A.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

Ball, A.

Barthelemy, O.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Barthélemy, O.

Baudach, S.

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys. A 69, S395–S398 (1999).
[CrossRef]

Baudelet, M.

M. Baudelet, C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 microm thulium fiber laser,” Opt. Express 18, 7905 (2010).
[CrossRef]

C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
[CrossRef]

Baumert, T.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

Bette, H.

H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004).
[CrossRef]

Bolshov, M.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000).
[CrossRef]

Bonse, J.

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys. A 69, S395–S398 (1999).
[CrossRef]

Bouchard, P.

J. F. Y. Gravel, F. R. Doucet, P. Bouchard, and M. Sabsabi, “Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26, 1354–1361 (2011).
[CrossRef]

Bridge, C.

C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).

Brown, C.

C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).

Brown, M. S.

Buckley, S. G.

Burgess, S.

Burnett, J.

M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010).
[CrossRef]

Carranza, J. E.

Chaker, M.

B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. Johnston, S. Laville, and F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy,” Appl. Spectrosc. 58, 122–129 (2004).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Chaléard, C.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

Cielo, P.

Couris, S.

Dagdigian, P.

C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).

De Lucia, F. C.

Detalle, V.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

Dikmelik, Y.

M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010).
[CrossRef]

Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16, 5332–5337 (2008).
[CrossRef]

Doucet, F. R.

J. F. Y. Gravel, F. R. Doucet, P. Bouchard, and M. Sabsabi, “Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26, 1354–1361 (2011).
[CrossRef]

Elnaby, S.

K. Amal, S. Elnaby, V. Palleschi, A. Salvetti, and M. Harith, “Comparison between single-and double-pulse LIBS at different air pressures on silicon target,” Appl. Phys. B 83, 651–657 (2006).
[CrossRef]

Fisher, B. T.

Fisher, M.

C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).

Fotakis, C.

Fréjafon, E.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
[CrossRef]

Frische, K.

Geertsen, C.

C. Geertsen, J. L. Lacour, P. Mauchien, and L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Gibb, E.

Gottfried, J. L.

Gravel, J. F. Y.

J. F. Y. Gravel, F. R. Doucet, P. Bouchard, and M. Sabsabi, “Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26, 1354–1361 (2011).
[CrossRef]

Grigoropoulos, C. P.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118–251113 (2007).
[CrossRef]

Guo, Z.

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
[CrossRef]

Haag, L.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

Hahn, D.

Hahn, D. W.

Harith, M.

K. Amal, S. Elnaby, V. Palleschi, A. Salvetti, and M. Harith, “Comparison between single-and double-pulse LIBS at different air pressures on silicon target,” Appl. Phys. B 83, 651–657 (2006).
[CrossRef]

Hatziapostolou, A.

Heon, R.

M. Sabsabi, R. Heon, and L. St-Onge, “Critical evaluation of gated CCD detectors for laser-induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 60, 1211–1216 (2005).
[CrossRef]

Hergenröder, R.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000).
[CrossRef]

Hohreiter, V.

Huang, H.

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

Hwang, D. J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118–251113 (2007).
[CrossRef]

Jeon, H.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118–251113 (2007).
[CrossRef]

Johnsen, H. A.

Johnston, T.

B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. Johnston, S. Laville, and F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy,” Appl. Spectrosc. 58, 122–129 (2004).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Kautek, W.

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys. A 69, S395–S398 (1999).
[CrossRef]

Krause, H.

Kumar, A.

Kutschera, U.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

Lacour, J. L.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

C. Geertsen, J. L. Lacour, P. Mauchien, and L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
[CrossRef]

Larrauri, E.

Laville, S.

B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. Johnston, S. Laville, and F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy,” Appl. Spectrosc. 58, 122–129 (2004).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Le Drogoff, B.

B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. Johnston, S. Laville, and F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy,” Appl. Spectrosc. 58, 122–129 (2004).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Leahy-Hoppa, M. R.

M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010).
[CrossRef]

Margetic, V.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000).
[CrossRef]

Margot, J.

B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. Johnston, S. Laville, and F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy,” Appl. Spectrosc. 58, 122–129 (2004).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Mauchien, P.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

C. Geertsen, J. L. Lacour, P. Mauchien, and L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Mavromanolakis, A.

Mayorov, F.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

McEnnis, C.

M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010).
[CrossRef]

Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16, 5332–5337 (2008).
[CrossRef]

Meynadier, P.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

Miguel, R.

Miragliotta, J.

M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010).
[CrossRef]

Miziolek, A. W.

Monch, I.

Munson, C. A.

Niemax, K.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000).
[CrossRef]

Noll, R.

H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004).
[CrossRef]

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181 (1999).
[CrossRef]

R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
[CrossRef]

Nouvellon, C.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

Osiander, R.

M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010).
[CrossRef]

Pakulev, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000).
[CrossRef]

Palianov, P.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

Palleschi, V.

K. Amal, S. Elnaby, V. Palleschi, A. Salvetti, and M. Harith, “Comparison between single-and double-pulse LIBS at different air pressures on silicon target,” Appl. Phys. B 83, 651–657 (2006).
[CrossRef]

Perdrix, M.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

Pierrard, L.

C. Geertsen, J. L. Lacour, P. Mauchien, and L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Richardson, M.

M. Baudelet, C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 microm thulium fiber laser,” Opt. Express 18, 7905 (2010).
[CrossRef]

C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).

Roquemore, W. M.

Russo, R. E.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118–251113 (2007).
[CrossRef]

Sabsabi, M.

J. F. Y. Gravel, F. R. Doucet, P. Bouchard, and M. Sabsabi, “Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26, 1354–1361 (2011).
[CrossRef]

M. Sabsabi, R. Heon, and L. St-Onge, “Critical evaluation of gated CCD detectors for laser-induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 60, 1211–1216 (2005).
[CrossRef]

B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. Johnston, S. Laville, and F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy,” Appl. Spectrosc. 58, 122–129 (2004).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

Sallé, B.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

Salvetti, A.

K. Amal, S. Elnaby, V. Palleschi, A. Salvetti, and M. Harith, “Comparison between single-and double-pulse LIBS at different air pressures on silicon target,” Appl. Phys. B 83, 651–657 (2006).
[CrossRef]

Sarpe-Tudoran, C.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

Sattmann, R.

Semerok, A.

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

Shah, L.

Sigman, M.

C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).

Singh, J. P.

Smith, B. W.

Spicer, J. B.

M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010).
[CrossRef]

Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16, 5332–5337 (2008).
[CrossRef]

Stockhaus, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000).
[CrossRef]

St-Onge, L.

M. Sabsabi, R. Heon, and L. St-Onge, “Critical evaluation of gated CCD detectors for laser-induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 60, 1211–1216 (2005).
[CrossRef]

Sturm, V.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181 (1999).
[CrossRef]

Tran, M.

Vidal, F.

B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. Johnston, S. Laville, and F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy,” Appl. Spectrosc. 58, 122–129 (2004).
[CrossRef]

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Von Kaenel, Y.

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

Willis, C.

Winefordner, J. D.

Winter, M.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

Wolf, J. P.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
[CrossRef]

Wollenhaupt, M.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

Yoo, J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118–251113 (2007).
[CrossRef]

Yu, J.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
[CrossRef]

Yueh, F. Y.

Appl. Opt. (4)

Appl. Phys. A (1)

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys. A 69, S395–S398 (1999).
[CrossRef]

Appl. Phys. B (2)

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[CrossRef]

K. Amal, S. Elnaby, V. Palleschi, A. Salvetti, and M. Harith, “Comparison between single-and double-pulse LIBS at different air pressures on silicon target,” Appl. Phys. B 83, 651–657 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118–251113 (2007).
[CrossRef]

Appl. Spectrosc. (6)

Appl. Surf. Sci. (1)

A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999).
[CrossRef]

J. Anal. At. Spectrom. (1)

J. F. Y. Gravel, F. R. Doucet, P. Bouchard, and M. Sabsabi, “Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26, 1354–1361 (2011).
[CrossRef]

J. Appl. Phys. (1)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006).
[CrossRef]

J. Micromech. Microeng. (1)

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

J. Phys. D (2)

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181 (1999).
[CrossRef]

H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004).
[CrossRef]

Opt. Express (3)

Proc. SPIE (1)

C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).

Sensors (1)

M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010).
[CrossRef]

Spectrochim. Acta Part B (3)

B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001).
[CrossRef]

M. Sabsabi, R. Heon, and L. St-Onge, “Critical evaluation of gated CCD detectors for laser-induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 60, 1211–1216 (2005).
[CrossRef]

C. Geertsen, J. L. Lacour, P. Mauchien, and L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Spectrochim. Acta, Part B (1)

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Femtosecond fiber LIBS experimental setup.

Fig. 2.
Fig. 2.

LIBS signal obtained from (a) aluminum block and (b) lead–tin alloy block.

Fig. 3.
Fig. 3.

LIBS signal obtained from (a) soda lime glass and (b) GaAs.

Fig. 4.
Fig. 4.

LIBS signal obtained from brass block: (a) real counts with different pulse energies—0.75, 1.5, and 3.0 μJ from bottom to top and (b) normalized counts for (a).

Fig. 5.
Fig. 5.

LIBS signal obtained from brass block: real counts with different scanning speeds, 0.120.0mm/s from bottom to top.

Fig. 6.
Fig. 6.

Microscopic images of aluminum ablation craters by single fs laser pulses with different pulse energies. Pulse energy is marked in the figure.

Fig. 7.
Fig. 7.

Time-resolved LIBS signal measured from aluminum block with 5 ns gate width. Delay time or gated width is marked in each figure.

Fig. 8.
Fig. 8.

Time-resolved LIBS signal measured from soda lime glass with 5 ns gate width. Delay time is marked in each time step.

Fig. 9.
Fig. 9.

LIBS comparison results of brass block with CCD and ICCD.

Tables (1)

Tables Icon

Table 1. LIBS Signal Collection Systems Specifications

Metrics