Abstract

A Mueller–Stokes analysis is applied to pure bismuth thin film samples prepared by the laser ablation technique by using a polarimeter with a 632.8 nm continuum wavelength laser. The complex refractive index is determined in the range of 250–1100 nm. Results from the Mueller matrix show the high sensitivity of diattenuation and polarizance parameters as a function of the sample thickness and the incidence angle, except at the pseudo-Brewster angle, where they exhibit the same value. Results show that the knowledge of the polarimetric response, with appropriate incident polarization states, could be used to design photonic Bi-based devices for several applications. Polarization dependence is the result of changes on the surface morphology as a result of the small value of the skin depth.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Hunderi, “Optical properties of crystalline and amorphous bismuth films,” J. Phys. F 5, 2214–2225 (1975).
    [CrossRef]
  2. S. Golin, “Band structure of bismuth: pseudopotential approach,” Phys. Rev. 166, 643–651 (1968).
    [CrossRef]
  3. M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV–VI and group V materials,” Phys. Rev. 133, A1685–A1697 (1964).
    [CrossRef]
  4. A. P. Lenham, D. M. Treherne, and R. J. Metcalfe, “Optical properties of antimony and bismuth crystals,” J. Opt. Soc. Am. 55, 1072–1074 (1965).
    [CrossRef]
  5. J. Toots and L. Marton, “Optical properties of antimony and bismuth in the far ultraviolet,” J. Opt. Soc. Am. 59, 1305–1308 (1969).
    [CrossRef]
  6. S. Dogel, D. Nattland, and W. Freyland, “Complete wetting transitions at the liquid-vapor interface of gallium-bismuth alloys: single wavelength and spectroscopic ellipsometry studies,” Phys. Rev. B 72, 085403 (2005).
    [CrossRef]
  7. O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nat. Mater. 5, 118–122 (2006).
    [CrossRef]
  8. M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).
    [CrossRef]
  9. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597–602 (2001).
    [CrossRef]
  10. A. Ghosh, “Memory switching in bismuth‐vanadate glasses,” J. Appl. Phys. 64, 2652–2655 (1988).
    [CrossRef]
  11. I. Svancara, C. Prior, S. B. Hocevar, and J. Wang, “A decade with bismuth-based electrodes in electroanalysis,” Electroanalysis 22, 1405–1420 (2010).
    [CrossRef]
  12. G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
    [CrossRef]
  13. R. Atkinson and E. Curran, “Ellipsometric examination of the oxidation of vacuum-deposited bismuth films,” Thin Solid Film 128, 333–339 (1985).
    [CrossRef]
  14. J. C. G. de Sande, T. Missana, and C. N. Afonso, “Optical properties of pulsed laser deposited bismuth films,” J. Appl. Phys. 80, 7023–7027 (1996).
    [CrossRef]
  15. R. Serna, J. C. G. de Sande, J. M. Ballesteros, and C. N. Afonso, “Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals,” J. Appl. Phys. 84, 4509–4516 (1998).
    [CrossRef]
  16. D. Liu, K. Wu, M. Shih, and M. Chern, “Giant nonlinear optical properties of bismuth thin films grown by pulsed laser deposition,” Opt. Lett. 27, 1549–1551 (2002).
    [CrossRef]
  17. D. Goldstein, Polarized Light, 3rd ed. (CRC, 2011).
  18. J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261(1985).
    [CrossRef]
  19. J. J. Gil and E. Bernabeu, “Depolarization and polarization indexes of an optical system,” Opt. Acta 33, 185–189 (1986).
    [CrossRef]
  20. S. Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998).
    [CrossRef]
  21. R. Espinosa-Luna and E. Bernabeu, “On the Q(M) depolarization metric,” Opt. Commun. 277, 256–258 (2007).
    [CrossRef]
  22. S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
    [CrossRef]
  23. R. Espinosa-Luna, G. Atondo-Rubio, and O. J. Velarde-Escobar, “Métrica de despolarización escalar Q(M) como criterio para identificar sistemas retardadores o desfasadores puros,” Rev. Mex. Fis. 56, 406–410 (2010).
  24. P. Eliés, B. Le Jeune, F. Le Roy-Brehonnet, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38(1996).
    [CrossRef]
  25. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  26. R. Espinosa-Luna, “Scattering by rough surfaces in a conical configuration: experimental Mueller matrix,” Opt. Lett. 27, 1510–1512 (2002).
    [CrossRef]
  27. K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller–Stokes analysis of photonic crystal fibers with mechanically-induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
    [CrossRef]
  28. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  29. P. Y. Wang and A. L. Jain, “Modulated piezoreflectance in bismuth,” Phys. Rev. B 2, 2978–2983 (1970).
    [CrossRef]

2012 (2)

S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
[CrossRef]

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller–Stokes analysis of photonic crystal fibers with mechanically-induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

2010 (2)

R. Espinosa-Luna, G. Atondo-Rubio, and O. J. Velarde-Escobar, “Métrica de despolarización escalar Q(M) como criterio para identificar sistemas retardadores o desfasadores puros,” Rev. Mex. Fis. 56, 406–410 (2010).

I. Svancara, C. Prior, S. B. Hocevar, and J. Wang, “A decade with bismuth-based electrodes in electroanalysis,” Electroanalysis 22, 1405–1420 (2010).
[CrossRef]

2007 (1)

R. Espinosa-Luna and E. Bernabeu, “On the Q(M) depolarization metric,” Opt. Commun. 277, 256–258 (2007).
[CrossRef]

2006 (2)

O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nat. Mater. 5, 118–122 (2006).
[CrossRef]

M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).
[CrossRef]

2005 (1)

S. Dogel, D. Nattland, and W. Freyland, “Complete wetting transitions at the liquid-vapor interface of gallium-bismuth alloys: single wavelength and spectroscopic ellipsometry studies,” Phys. Rev. B 72, 085403 (2005).
[CrossRef]

2002 (2)

2001 (1)

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597–602 (2001).
[CrossRef]

1998 (2)

R. Serna, J. C. G. de Sande, J. M. Ballesteros, and C. N. Afonso, “Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals,” J. Appl. Phys. 84, 4509–4516 (1998).
[CrossRef]

S. Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998).
[CrossRef]

1996 (2)

P. Eliés, B. Le Jeune, F. Le Roy-Brehonnet, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38(1996).
[CrossRef]

J. C. G. de Sande, T. Missana, and C. N. Afonso, “Optical properties of pulsed laser deposited bismuth films,” J. Appl. Phys. 80, 7023–7027 (1996).
[CrossRef]

1993 (1)

G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
[CrossRef]

1988 (1)

A. Ghosh, “Memory switching in bismuth‐vanadate glasses,” J. Appl. Phys. 64, 2652–2655 (1988).
[CrossRef]

1986 (1)

J. J. Gil and E. Bernabeu, “Depolarization and polarization indexes of an optical system,” Opt. Acta 33, 185–189 (1986).
[CrossRef]

1985 (2)

J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261(1985).
[CrossRef]

R. Atkinson and E. Curran, “Ellipsometric examination of the oxidation of vacuum-deposited bismuth films,” Thin Solid Film 128, 333–339 (1985).
[CrossRef]

1975 (1)

O. Hunderi, “Optical properties of crystalline and amorphous bismuth films,” J. Phys. F 5, 2214–2225 (1975).
[CrossRef]

1970 (1)

P. Y. Wang and A. L. Jain, “Modulated piezoreflectance in bismuth,” Phys. Rev. B 2, 2978–2983 (1970).
[CrossRef]

1969 (1)

1968 (1)

S. Golin, “Band structure of bismuth: pseudopotential approach,” Phys. Rev. 166, 643–651 (1968).
[CrossRef]

1965 (1)

1964 (1)

M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV–VI and group V materials,” Phys. Rev. 133, A1685–A1697 (1964).
[CrossRef]

Afonso, C. N.

R. Serna, J. C. G. de Sande, J. M. Ballesteros, and C. N. Afonso, “Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals,” J. Appl. Phys. 84, 4509–4516 (1998).
[CrossRef]

J. C. G. de Sande, T. Missana, and C. N. Afonso, “Optical properties of pulsed laser deposited bismuth films,” J. Appl. Phys. 80, 7023–7027 (1996).
[CrossRef]

Al-Hajj, A.

M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).
[CrossRef]

Atkinson, R.

R. Atkinson and E. Curran, “Ellipsometric examination of the oxidation of vacuum-deposited bismuth films,” Thin Solid Film 128, 333–339 (1985).
[CrossRef]

Atondo-Rubio, G.

R. Espinosa-Luna, G. Atondo-Rubio, and O. J. Velarde-Escobar, “Métrica de despolarización escalar Q(M) como criterio para identificar sistemas retardadores o desfasadores puros,” Rev. Mex. Fis. 56, 406–410 (2010).

Ballesteros, J. M.

R. Serna, J. C. G. de Sande, J. M. Ballesteros, and C. N. Afonso, “Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals,” J. Appl. Phys. 84, 4509–4516 (1998).
[CrossRef]

Bernabeu, E.

R. Espinosa-Luna and E. Bernabeu, “On the Q(M) depolarization metric,” Opt. Commun. 277, 256–258 (2007).
[CrossRef]

J. J. Gil and E. Bernabeu, “Depolarization and polarization indexes of an optical system,” Opt. Acta 33, 185–189 (1986).
[CrossRef]

J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261(1985).
[CrossRef]

Brosseau, C.

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

Cabaud, B.

G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
[CrossRef]

Cardona, M.

M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV–VI and group V materials,” Phys. Rev. 133, A1685–A1697 (1964).
[CrossRef]

Cariou, J.

P. Eliés, B. Le Jeune, F. Le Roy-Brehonnet, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38(1996).
[CrossRef]

Chern, M.

Chipman, R. A.

S. Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998).
[CrossRef]

Colpitts, T.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597–602 (2001).
[CrossRef]

Curran, E.

R. Atkinson and E. Curran, “Ellipsometric examination of the oxidation of vacuum-deposited bismuth films,” Thin Solid Film 128, 333–339 (1985).
[CrossRef]

de Sande, J. C. G.

R. Serna, J. C. G. de Sande, J. M. Ballesteros, and C. N. Afonso, “Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals,” J. Appl. Phys. 84, 4509–4516 (1998).
[CrossRef]

J. C. G. de Sande, T. Missana, and C. N. Afonso, “Optical properties of pulsed laser deposited bismuth films,” J. Appl. Phys. 80, 7023–7027 (1996).
[CrossRef]

Dogel, S.

S. Dogel, D. Nattland, and W. Freyland, “Complete wetting transitions at the liquid-vapor interface of gallium-bismuth alloys: single wavelength and spectroscopic ellipsometry studies,” Phys. Rev. B 72, 085403 (2005).
[CrossRef]

Dumas, J.

G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
[CrossRef]

Eliés, P.

P. Eliés, B. Le Jeune, F. Le Roy-Brehonnet, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38(1996).
[CrossRef]

Ervasti, T.

S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
[CrossRef]

Espinosa-Luna, R.

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller–Stokes analysis of photonic crystal fibers with mechanically-induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

R. Espinosa-Luna, G. Atondo-Rubio, and O. J. Velarde-Escobar, “Métrica de despolarización escalar Q(M) como criterio para identificar sistemas retardadores o desfasadores puros,” Rev. Mex. Fis. 56, 406–410 (2010).

R. Espinosa-Luna and E. Bernabeu, “On the Q(M) depolarization metric,” Opt. Commun. 277, 256–258 (2007).
[CrossRef]

R. Espinosa-Luna, “Scattering by rough surfaces in a conical configuration: experimental Mueller matrix,” Opt. Lett. 27, 1510–1512 (2002).
[CrossRef]

Freyland, W.

S. Dogel, D. Nattland, and W. Freyland, “Complete wetting transitions at the liquid-vapor interface of gallium-bismuth alloys: single wavelength and spectroscopic ellipsometry studies,” Phys. Rev. B 72, 085403 (2005).
[CrossRef]

Fuchs, G.

G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
[CrossRef]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

Gao, X.

M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).
[CrossRef]

Ghosh, A.

A. Ghosh, “Memory switching in bismuth‐vanadate glasses,” J. Appl. Phys. 64, 2652–2655 (1988).
[CrossRef]

Gil, J. J.

J. J. Gil and E. Bernabeu, “Depolarization and polarization indexes of an optical system,” Opt. Acta 33, 185–189 (1986).
[CrossRef]

J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261(1985).
[CrossRef]

Goldstein, D.

D. Goldstein, Polarized Light, 3rd ed. (CRC, 2011).

Golin, S.

S. Golin, “Band structure of bismuth: pseudopotential approach,” Phys. Rev. 166, 643–651 (1968).
[CrossRef]

Greenaway, D. L.

M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV–VI and group V materials,” Phys. Rev. 133, A1685–A1697 (1964).
[CrossRef]

Grimm, J.

O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nat. Mater. 5, 118–122 (2006).
[CrossRef]

Hoareau, A.

G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
[CrossRef]

Hocevar, S. B.

I. Svancara, C. Prior, S. B. Hocevar, and J. Wang, “A decade with bismuth-based electrodes in electroanalysis,” Electroanalysis 22, 1405–1420 (2010).
[CrossRef]

Hunderi, O.

O. Hunderi, “Optical properties of crystalline and amorphous bismuth films,” J. Phys. F 5, 2214–2225 (1975).
[CrossRef]

Jain, A. L.

P. Y. Wang and A. L. Jain, “Modulated piezoreflectance in bismuth,” Phys. Rev. B 2, 2978–2983 (1970).
[CrossRef]

Ketolainen, J.

S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
[CrossRef]

Le Jeune, B.

P. Eliés, B. Le Jeune, F. Le Roy-Brehonnet, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38(1996).
[CrossRef]

Le Roy-Brehonnet, F.

P. Eliés, B. Le Jeune, F. Le Roy-Brehonnet, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38(1996).
[CrossRef]

Lenham, A. P.

Liu, D.

Lotrian, J.

P. Eliés, B. Le Jeune, F. Le Roy-Brehonnet, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38(1996).
[CrossRef]

Lu, S. Y.

S. Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998).
[CrossRef]

Marton, L.

Mélinon, P.

G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
[CrossRef]

Metcalfe, R. J.

Missana, T.

J. C. G. de Sande, T. Missana, and C. N. Afonso, “Optical properties of pulsed laser deposited bismuth films,” J. Appl. Phys. 80, 7023–7027 (1996).
[CrossRef]

Montandon, C.

G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
[CrossRef]

Nattland, D.

S. Dogel, D. Nattland, and W. Freyland, “Complete wetting transitions at the liquid-vapor interface of gallium-bismuth alloys: single wavelength and spectroscopic ellipsometry studies,” Phys. Rev. B 72, 085403 (2005).
[CrossRef]

Nie, S.

M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).
[CrossRef]

O’Quinn, B.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597–602 (2001).
[CrossRef]

O’Regan, R. M.

M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).
[CrossRef]

Oberemok, Ye.

S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
[CrossRef]

Peiponen, K. E.

S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
[CrossRef]

Perez, J. M.

O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nat. Mater. 5, 118–122 (2006).
[CrossRef]

Priezzhev, A.

S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
[CrossRef]

Prior, C.

I. Svancara, C. Prior, S. B. Hocevar, and J. Wang, “A decade with bismuth-based electrodes in electroanalysis,” Electroanalysis 22, 1405–1420 (2010).
[CrossRef]

Rabin, O.

O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nat. Mater. 5, 118–122 (2006).
[CrossRef]

Salas-Alcántara, K. M.

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller–Stokes analysis of photonic crystal fibers with mechanically-induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

Savenkov, S.

S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
[CrossRef]

Serna, R.

R. Serna, J. C. G. de Sande, J. M. Ballesteros, and C. N. Afonso, “Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals,” J. Appl. Phys. 84, 4509–4516 (1998).
[CrossRef]

Shih, M.

Siivola, E.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597–602 (2001).
[CrossRef]

Silfsten, P.

S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
[CrossRef]

Svancara, I.

I. Svancara, C. Prior, S. B. Hocevar, and J. Wang, “A decade with bismuth-based electrodes in electroanalysis,” Electroanalysis 22, 1405–1420 (2010).
[CrossRef]

Toots, J.

Torres-Gómez, I.

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller–Stokes analysis of photonic crystal fibers with mechanically-induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

Treherne, D. M.

Treilleux, M.

G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
[CrossRef]

Velarde-Escobar, O. J.

R. Espinosa-Luna, G. Atondo-Rubio, and O. J. Velarde-Escobar, “Métrica de despolarización escalar Q(M) como criterio para identificar sistemas retardadores o desfasadores puros,” Rev. Mex. Fis. 56, 406–410 (2010).

Venkatasubramanian, R.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597–602 (2001).
[CrossRef]

Wang, J.

I. Svancara, C. Prior, S. B. Hocevar, and J. Wang, “A decade with bismuth-based electrodes in electroanalysis,” Electroanalysis 22, 1405–1420 (2010).
[CrossRef]

Wang, P. Y.

P. Y. Wang and A. L. Jain, “Modulated piezoreflectance in bismuth,” Phys. Rev. B 2, 2978–2983 (1970).
[CrossRef]

Weissleder, R.

O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nat. Mater. 5, 118–122 (2006).
[CrossRef]

Wojtkiewicz, G.

O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nat. Mater. 5, 118–122 (2006).
[CrossRef]

Wu, K.

Xing, Y.

M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).
[CrossRef]

Yezhelyev, M. V.

M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).
[CrossRef]

Electroanalysis (1)

I. Svancara, C. Prior, S. B. Hocevar, and J. Wang, “A decade with bismuth-based electrodes in electroanalysis,” Electroanalysis 22, 1405–1420 (2010).
[CrossRef]

J. Appl. Phys. (3)

A. Ghosh, “Memory switching in bismuth‐vanadate glasses,” J. Appl. Phys. 64, 2652–2655 (1988).
[CrossRef]

J. C. G. de Sande, T. Missana, and C. N. Afonso, “Optical properties of pulsed laser deposited bismuth films,” J. Appl. Phys. 80, 7023–7027 (1996).
[CrossRef]

R. Serna, J. C. G. de Sande, J. M. Ballesteros, and C. N. Afonso, “Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals,” J. Appl. Phys. 84, 4509–4516 (1998).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys. D (2)

G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993).
[CrossRef]

P. Eliés, B. Le Jeune, F. Le Roy-Brehonnet, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38(1996).
[CrossRef]

J. Phys. F (1)

O. Hunderi, “Optical properties of crystalline and amorphous bismuth films,” J. Phys. F 5, 2214–2225 (1975).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012).
[CrossRef]

Lancet Oncol. (1)

M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006).
[CrossRef]

Nat. Mater. (1)

O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nat. Mater. 5, 118–122 (2006).
[CrossRef]

Nature (1)

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597–602 (2001).
[CrossRef]

Opt. Acta (2)

J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261(1985).
[CrossRef]

J. J. Gil and E. Bernabeu, “Depolarization and polarization indexes of an optical system,” Opt. Acta 33, 185–189 (1986).
[CrossRef]

Opt. Commun. (2)

S. Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998).
[CrossRef]

R. Espinosa-Luna and E. Bernabeu, “On the Q(M) depolarization metric,” Opt. Commun. 277, 256–258 (2007).
[CrossRef]

Opt. Eng. (1)

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller–Stokes analysis of photonic crystal fibers with mechanically-induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (2)

S. Golin, “Band structure of bismuth: pseudopotential approach,” Phys. Rev. 166, 643–651 (1968).
[CrossRef]

M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV–VI and group V materials,” Phys. Rev. 133, A1685–A1697 (1964).
[CrossRef]

Phys. Rev. B (2)

S. Dogel, D. Nattland, and W. Freyland, “Complete wetting transitions at the liquid-vapor interface of gallium-bismuth alloys: single wavelength and spectroscopic ellipsometry studies,” Phys. Rev. B 72, 085403 (2005).
[CrossRef]

P. Y. Wang and A. L. Jain, “Modulated piezoreflectance in bismuth,” Phys. Rev. B 2, 2978–2983 (1970).
[CrossRef]

Rev. Mex. Fis. (1)

R. Espinosa-Luna, G. Atondo-Rubio, and O. J. Velarde-Escobar, “Métrica de despolarización escalar Q(M) como criterio para identificar sistemas retardadores o desfasadores puros,” Rev. Mex. Fis. 56, 406–410 (2010).

Thin Solid Film (1)

R. Atkinson and E. Curran, “Ellipsometric examination of the oxidation of vacuum-deposited bismuth films,” Thin Solid Film 128, 333–339 (1985).
[CrossRef]

Other (3)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

D. Goldstein, Polarized Light, 3rd ed. (CRC, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

X-ray diffraction pattern of a Bi thin film with 180 nm thickness and grain size of 35 nm.

Fig. 2.
Fig. 2.

Rutherford backscattering spectra of pure Bi thin film (20 nm thickness), compared with the spectra obtained from two Bi oxide thin films (BO1 and BO2) with different thicknesses. The absence of oxygen signal in the case of the pure Bi thin film is observed.

Fig. 3.
Fig. 3.

(a) Real (n) and (b) imaginary (k) parts of the refractive index of Bi, as a function of wavelength, obtained in PLD films of different thicknesses. x’s represent 180 nm (black); dash-dotted curve, 160 nm (red); solid curve, 103 nm (yellow); dashed curve, 91 nm (blue); dotted curve, 66 nm (magenta); solid curve, 60 nm (green); and asterisks, 180 nm (red), measured 6 months later (oxide overlayer not determined). Results obtained are similar to those reported in [1416] and references therein for samples with thicknesses lower than or equal to 103 nm. Data has been taken at 70° incidence.

Fig. 4.
Fig. 4.

Polarimetric optical response of Bi thin film sample (160 nm thickness) versus incident polarization state. An illumination of 632.8 nm of continuous wavelength was employed at 66.5° incidence (the pseudo-Brewster angle).

Tables (3)

Tables Icon

Table 1. Polarimetric Data as a Function of Bi Thin Film Thickness at Incidence Angles of 66.5° (pseudo-Brewster Angle) and 70°, Respectivelya

Tables Icon

Table 2. Polarimetric Data of Sample A (Bi6-1, 180 nm) as a Function of the Surface Polarization Isotropya

Tables Icon

Table 3. Polarimetric Data of Sample A (Bi6-1, 180 nm) as a Function of the Incidence Anglea

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

So=MSi(s0os1os2os3o)=[m00m01m02m03m10m11m12m13m20m21m22m23m30m31m32m33](s0is1is2is3i)=(m00s0i+m01s1i+m02s2i+m03s3im10s0i+m11s1i+m12s2i+m13s3im20s0i+m21s1i+m22s2i+m23s3im30s0i+m31s1i+m32s2i+m33s3i),
0Add=(DoP)Maxo(DoP)mino(DoP)Maxo+(DoP)mino1,
0Agd=(g)Maxo(g)mino(g)Maxo+(g)mino1.
n=Re{tanθi[14ρ(1+ρ)2sin2θi]1/2},k=Im{tanθi[14ρ(1+ρ)2sin2θi]1/2},
ρ(λ)=tanψexp(iΔ),tanψ=|rprs|,Δ=δrpδrs,
Skin depth=λ4πκ[nm],N=nik,
MA,66.5=[1.00000.26720.01170.03730.09530.37370.52740.76950.24230.92370.19290.36970.00630.00630.76730.5146],MA,70=[1.00000.29390.00490.02070.10170.37710.36610.82630.27040.92000.12110.37270.00650.00650.86230.3127],MB,66.5=[1.00000.26840.01140.01020.26840.99690.00200.06230.00460.06980.00620.81020.02200.02530.00960.4844],MB,70=[1.00000.29490.02080.00000.29500.99730.06040.06130.00330.06380.34200.89710.01960.02940.89290.3288],MC,66.5=[1.00000.27800.01730.00000.27750.99800.06660.04350.00850.05160.59340.77000.01710.02780.75310.5815],MC,70=[1.00000.30750.01730.00350.30750.99870.06110.04650.00570.04740.44990.84910.01630.03100.83610.4349],MD,66.5=[1.00000.27690.01500.00350.27680.99760.06840.04320.00610.05660.69740.76380.02010.02880.74840.5816],MD,70=[1.00000.30960.01380.00120.30930.99770.06140.04830.00380.05180.45410.84550.02010.03240.83160.4371],ME,66.5=[1.00000.26310.00700.00360.26290.99760.06470.04800.00590.05770.61680.78260.02050.02800.75340.6118],ME,70=[1.00000.31160.01270.03740.31140.99770.05970.03260.00410.05180.46340.79510.02010.03180.82730.4254],MF,66.5=[1.00000.27480.01610.00230.27450.99880.06660.04500.00690.05640.61220.74130.01920.02740.39110.5939],MF,70=[1.00000.31270.02070.00700.31300.99950.06410.04100.00550.04960.46400.83670.01320.03280.45070.4513].

Metrics