Abstract

We studied the structure and optical properties of B4C/Mo/Y/Si multilayer systems. Using extended x-ray absorption fine structure measurements at the Y and Mo K-edge, the structure of the subnanometer thick Y layer and the underlying Mo layer were analyzed. It was found that even a 0.2 nm thick Y layer significantly reduced silicon diffusion toward Mo, thus reducing Mo silicide formation. Hard x-ray reflectometry showed that the difference in average interface roughness of the B4C/Mo/Y/Si multilayer structure compared to Mo/Si and B4C/Mo/B4C/Si multilayer structures was negligible. Soft x-ray reflectometry showed optical improvement of B4C/Mo/Y/Si with respect to Mo/Si and B4C/Mo/B4C/Si multilayer structures.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86, 255–294 (2011).
    [CrossRef]
  2. E. A. Spiller, Soft X-Ray Optics (SPIE, 1994).
  3. J. I. Larruquert, “General theory of sub-quarterwave multilayers with highly absorbing materials,” J. Opt. Soc. Am. A 18, 2617–2627 (2001).
    [CrossRef]
  4. M. Singh and J. J. M. Braat, “Design of multilayer extreme-ultraviolet mirrors for enhanced reflectivity,” Appl. Opt. 39, 2189–2197 (2000).
    [CrossRef]
  5. J. I. Larruquert, “Sub-quarterwave multilayers with enhanced reflectance at 13.4 and 11.3 nm,” Opt. Commun. 206, 259–273 (2002).
    [CrossRef]
  6. S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
    [CrossRef]
  7. S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
    [CrossRef]
  8. J. I. Larruquert, “Layer-by-layer design method for multilayers with barrier layers: application to Si/Mo multilayers for extreme-ultraviolet lithography,” J. Opt. Soc. Am. A 21, 1750–1760 (2004).
    [CrossRef]
  9. S. Bajt, D. G. Stearns, and P. A. Kearney, “Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers,” J. Appl. Phys. 90, 1017–1025 (2001).
    [CrossRef]
  10. J. M. Freitag and B. M. Clemens, “Nonspecular x-ray reflectivity study of roughness scaling in Si/Mo multilayers,” J. Appl. Phys. 89, 1101–1107 (2001).
    [CrossRef]
  11. E. M. Gullikson, D. G. Stearns, D. P. Gaines, and J. H. Underwood, “Nonspecular scattering from multilayer mirrors at normal incidence,” Proc. SPIE 3113, 412–419 (1997).
    [CrossRef]
  12. P. J. Cumpson and M. P. Seah, “Elastic scattering corrections in AES and XPS. II. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments,” Surf. Interface Anal. 25, 430–446 (1997).
    [CrossRef]
  13. P. J. Cumpson, “Angle-resolved XPS and AES: depth resolution limits and a general comparison of properties of depth-profile reconstruction methods,” J. Electron Spectrosc. Relat. Phenom. 73, 25–52 (1995).
    [CrossRef]
  14. T. L. Lee and L. J. Chen, “Interfacial reactions in ultrahigh vacuum deposited Y-Si multilayer films,” J. Appl. Phys. 75, 2007–2014 (1994).
    [CrossRef]
  15. A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
    [CrossRef]
  16. L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar, “The surface energy of metals,” Surf. Sci. 411, 186–202 (1998).
    [CrossRef]
  17. B. K. Teo, EXAFS: Basic Principles and Data Analysis (Springer-Verlag, 1986).
  18. S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, “Multiple-scattering calculations of x-ray absorption spectra,” Phys. Rev. B 52, 2992–3009 (1995).
    [CrossRef]
  19. J. M. Freitag and B. M. Clemens, “Stress evolution in Mo/Si multilayers for high-reflectivity extreme ultraviolet mirrors,” Appl. Phys. Lett. 73, 43–45 (1998).
    [CrossRef]

2011 (1)

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86, 255–294 (2011).
[CrossRef]

2006 (1)

A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
[CrossRef]

2004 (1)

2002 (3)

J. I. Larruquert, “Sub-quarterwave multilayers with enhanced reflectance at 13.4 and 11.3 nm,” Opt. Commun. 206, 259–273 (2002).
[CrossRef]

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

2001 (3)

S. Bajt, D. G. Stearns, and P. A. Kearney, “Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers,” J. Appl. Phys. 90, 1017–1025 (2001).
[CrossRef]

J. M. Freitag and B. M. Clemens, “Nonspecular x-ray reflectivity study of roughness scaling in Si/Mo multilayers,” J. Appl. Phys. 89, 1101–1107 (2001).
[CrossRef]

J. I. Larruquert, “General theory of sub-quarterwave multilayers with highly absorbing materials,” J. Opt. Soc. Am. A 18, 2617–2627 (2001).
[CrossRef]

2000 (1)

1998 (2)

J. M. Freitag and B. M. Clemens, “Stress evolution in Mo/Si multilayers for high-reflectivity extreme ultraviolet mirrors,” Appl. Phys. Lett. 73, 43–45 (1998).
[CrossRef]

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar, “The surface energy of metals,” Surf. Sci. 411, 186–202 (1998).
[CrossRef]

1997 (2)

E. M. Gullikson, D. G. Stearns, D. P. Gaines, and J. H. Underwood, “Nonspecular scattering from multilayer mirrors at normal incidence,” Proc. SPIE 3113, 412–419 (1997).
[CrossRef]

P. J. Cumpson and M. P. Seah, “Elastic scattering corrections in AES and XPS. II. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments,” Surf. Interface Anal. 25, 430–446 (1997).
[CrossRef]

1995 (2)

P. J. Cumpson, “Angle-resolved XPS and AES: depth resolution limits and a general comparison of properties of depth-profile reconstruction methods,” J. Electron Spectrosc. Relat. Phenom. 73, 25–52 (1995).
[CrossRef]

S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, “Multiple-scattering calculations of x-ray absorption spectra,” Phys. Rev. B 52, 2992–3009 (1995).
[CrossRef]

1994 (1)

T. L. Lee and L. J. Chen, “Interfacial reactions in ultrahigh vacuum deposited Y-Si multilayer films,” J. Appl. Phys. 75, 2007–2014 (1994).
[CrossRef]

Alameda, J.

S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Albers, R. C.

S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, “Multiple-scattering calculations of x-ray absorption spectra,” Phys. Rev. B 52, 2992–3009 (1995).
[CrossRef]

Ankudinov, A.

S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, “Multiple-scattering calculations of x-ray absorption spectra,” Phys. Rev. B 52, 2992–3009 (1995).
[CrossRef]

Bajt, S.

S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

S. Bajt, D. G. Stearns, and P. A. Kearney, “Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers,” J. Appl. Phys. 90, 1017–1025 (2001).
[CrossRef]

Barbee, T.

S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Bijkerk, F.

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86, 255–294 (2011).
[CrossRef]

Bontempi, E.

A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
[CrossRef]

Braat, J. J. M.

Carvalho, N. J. M.

A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
[CrossRef]

Chen, L. J.

T. L. Lee and L. J. Chen, “Interfacial reactions in ultrahigh vacuum deposited Y-Si multilayer films,” J. Appl. Phys. 75, 2007–2014 (1994).
[CrossRef]

Clemens, B. M.

J. M. Freitag and B. M. Clemens, “Nonspecular x-ray reflectivity study of roughness scaling in Si/Mo multilayers,” J. Appl. Phys. 89, 1101–1107 (2001).
[CrossRef]

J. M. Freitag and B. M. Clemens, “Stress evolution in Mo/Si multilayers for high-reflectivity extreme ultraviolet mirrors,” Appl. Phys. Lett. 73, 43–45 (1998).
[CrossRef]

Clift, W. M.

S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Cumpson, P. J.

P. J. Cumpson and M. P. Seah, “Elastic scattering corrections in AES and XPS. II. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments,” Surf. Interface Anal. 25, 430–446 (1997).
[CrossRef]

P. J. Cumpson, “Angle-resolved XPS and AES: depth resolution limits and a general comparison of properties of depth-profile reconstruction methods,” J. Electron Spectrosc. Relat. Phenom. 73, 25–52 (1995).
[CrossRef]

De Hosson, J. T. M.

A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
[CrossRef]

Depero, L. E.

A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
[CrossRef]

Eller, M. J.

S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, “Multiple-scattering calculations of x-ray absorption spectra,” Phys. Rev. B 52, 2992–3009 (1995).
[CrossRef]

Fedorenko, A. I.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Feigl, T.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Folta, J. A.

S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Freitag, J. M.

J. M. Freitag and B. M. Clemens, “Nonspecular x-ray reflectivity study of roughness scaling in Si/Mo multilayers,” J. Appl. Phys. 89, 1101–1107 (2001).
[CrossRef]

J. M. Freitag and B. M. Clemens, “Stress evolution in Mo/Si multilayers for high-reflectivity extreme ultraviolet mirrors,” Appl. Phys. Lett. 73, 43–45 (1998).
[CrossRef]

Gaines, D. P.

E. M. Gullikson, D. G. Stearns, D. P. Gaines, and J. H. Underwood, “Nonspecular scattering from multilayer mirrors at normal incidence,” Proc. SPIE 3113, 412–419 (1997).
[CrossRef]

Gullikson, E. M.

E. M. Gullikson, D. G. Stearns, D. P. Gaines, and J. H. Underwood, “Nonspecular scattering from multilayer mirrors at normal incidence,” Proc. SPIE 3113, 412–419 (1997).
[CrossRef]

Kaiser, N.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Kaufmann, B.

S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Kearney, P. A.

S. Bajt, D. G. Stearns, and P. A. Kearney, “Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers,” J. Appl. Phys. 90, 1017–1025 (2001).
[CrossRef]

Kollar, J.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar, “The surface energy of metals,” Surf. Sci. 411, 186–202 (1998).
[CrossRef]

Kondratenko, V. V.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Kuhlmann, T.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Larruquert, J. I.

Lee, T. L.

T. L. Lee and L. J. Chen, “Interfacial reactions in ultrahigh vacuum deposited Y-Si multilayer films,” J. Appl. Phys. 75, 2007–2014 (1994).
[CrossRef]

Louis, E.

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86, 255–294 (2011).
[CrossRef]

Patelli, A.

A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
[CrossRef]

Poltseva, O. V.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Rehr, J. J.

S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, “Multiple-scattering calculations of x-ray absorption spectra,” Phys. Rev. B 52, 2992–3009 (1995).
[CrossRef]

Rigato, V.

A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
[CrossRef]

Ruban, A. V.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar, “The surface energy of metals,” Surf. Sci. 411, 186–202 (1998).
[CrossRef]

Salmaso, G.

A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
[CrossRef]

Seah, M. P.

P. J. Cumpson and M. P. Seah, “Elastic scattering corrections in AES and XPS. II. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments,” Surf. Interface Anal. 25, 430–446 (1997).
[CrossRef]

Sevryukova, V. A.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Singh, M.

Skriver, H. L.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar, “The surface energy of metals,” Surf. Sci. 411, 186–202 (1998).
[CrossRef]

Spiller, E.

S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Spiller, E. A.

E. A. Spiller, Soft X-Ray Optics (SPIE, 1994).

Stearns, D. G.

S. Bajt, D. G. Stearns, and P. A. Kearney, “Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers,” J. Appl. Phys. 90, 1017–1025 (2001).
[CrossRef]

E. M. Gullikson, D. G. Stearns, D. P. Gaines, and J. H. Underwood, “Nonspecular scattering from multilayer mirrors at normal incidence,” Proc. SPIE 3113, 412–419 (1997).
[CrossRef]

Teo, B. K.

B. K. Teo, EXAFS: Basic Principles and Data Analysis (Springer-Verlag, 1986).

Tsarfati, T.

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86, 255–294 (2011).
[CrossRef]

Underwood, J. H.

E. M. Gullikson, D. G. Stearns, D. P. Gaines, and J. H. Underwood, “Nonspecular scattering from multilayer mirrors at normal incidence,” Proc. SPIE 3113, 412–419 (1997).
[CrossRef]

Vitos, L.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar, “The surface energy of metals,” Surf. Sci. 411, 186–202 (1998).
[CrossRef]

Yakshin, A. E.

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86, 255–294 (2011).
[CrossRef]

Yulin, S.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Zabinsky, S. I.

S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, “Multiple-scattering calculations of x-ray absorption spectra,” Phys. Rev. B 52, 2992–3009 (1995).
[CrossRef]

Zolotaryov, A. Y.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Zubarev, E. N.

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. M. Freitag and B. M. Clemens, “Stress evolution in Mo/Si multilayers for high-reflectivity extreme ultraviolet mirrors,” Appl. Phys. Lett. 73, 43–45 (1998).
[CrossRef]

J. Appl. Phys. (4)

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, A. I. Fedorenko, V. V. Kondratenko, O. V. Poltseva, V. A. Sevryukova, A. Y. Zolotaryov, and E. N. Zubarev, “Interlayer transition zones in Mo/Si superlattices,” J. Appl. Phys. 92, 1216–1220(2002).
[CrossRef]

S. Bajt, D. G. Stearns, and P. A. Kearney, “Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers,” J. Appl. Phys. 90, 1017–1025 (2001).
[CrossRef]

J. M. Freitag and B. M. Clemens, “Nonspecular x-ray reflectivity study of roughness scaling in Si/Mo multilayers,” J. Appl. Phys. 89, 1101–1107 (2001).
[CrossRef]

T. L. Lee and L. J. Chen, “Interfacial reactions in ultrahigh vacuum deposited Y-Si multilayer films,” J. Appl. Phys. 75, 2007–2014 (1994).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom. (1)

P. J. Cumpson, “Angle-resolved XPS and AES: depth resolution limits and a general comparison of properties of depth-profile reconstruction methods,” J. Electron Spectrosc. Relat. Phenom. 73, 25–52 (1995).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

J. I. Larruquert, “Sub-quarterwave multilayers with enhanced reflectance at 13.4 and 11.3 nm,” Opt. Commun. 206, 259–273 (2002).
[CrossRef]

Opt. Eng. (1)

S. Bajt, J. Alameda, T. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Phys. Rev. B (1)

S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, “Multiple-scattering calculations of x-ray absorption spectra,” Phys. Rev. B 52, 2992–3009 (1995).
[CrossRef]

Proc. SPIE (1)

E. M. Gullikson, D. G. Stearns, D. P. Gaines, and J. H. Underwood, “Nonspecular scattering from multilayer mirrors at normal incidence,” Proc. SPIE 3113, 412–419 (1997).
[CrossRef]

Prog. Surf. Sci. (1)

E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci. 86, 255–294 (2011).
[CrossRef]

Surf. Coat. Technol. (1)

A. Patelli, V. Rigato, G. Salmaso, N. J. M. Carvalho, J. T. M. De Hosson, E. Bontempi, and L. E. Depero, “Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers,” Surf. Coat. Technol. 201, 143–147(2006).
[CrossRef]

Surf. Interface Anal. (1)

P. J. Cumpson and M. P. Seah, “Elastic scattering corrections in AES and XPS. II. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments,” Surf. Interface Anal. 25, 430–446 (1997).
[CrossRef]

Surf. Sci. (1)

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar, “The surface energy of metals,” Surf. Sci. 411, 186–202 (1998).
[CrossRef]

Other (2)

B. K. Teo, EXAFS: Basic Principles and Data Analysis (Springer-Verlag, 1986).

E. A. Spiller, Soft X-Ray Optics (SPIE, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Numerically calculated peak reflectances for 13.5 nm radiation at near normal incidence of the model systems: (Mo/barrier/Si)×50, with the barrier being either Y, YSi2, MoSi2, or B4C. The straight dotted line is the peak reflectance of the Mo/Si multilayer system with 50 periods. No roughness is included in the calculations.

Fig. 2.
Fig. 2.

Optical constants n and k of materials used for the calculations.

Fig. 3.
Fig. 3.

EUV reflection curves of a Mo/Si and B4C/Mo/Y (0.2nm)/Si multilayer structure with 50 periods.

Fig. 4.
Fig. 4.

Rocking curves around the third Bragg order for the multilayer systems with B4C below and either Y or B4C on top of Mo, compared to the Mo/Si reference system. The rocking curve for the 0.2 nm thick Y sample has been slightly translated, and the rocking curve for the Mo/Si sample has been normalized to the peak intensity of the other curves. The Mo/Si system has a slightly higher amplitude of average roughness.

Fig. 5.
Fig. 5.

(a) Si concentration profile for 0.5, 1.0, and 2.0 nm Si deposited on a thick Y layer obtained using a linear gradient model for ARXPS measurements and (b) ARXPS data and the corresponding fits (linear gradient model) through the data.

Fig. 6.
Fig. 6.

Measured and calculated χ(R) distributions for the Mo K-edge for a 200 nm thick Mo layer and a Mo (0.5nm)/Nb (0.5 nm) multilayer structure. The interatomic distance of the Mo BCC lattice of the multilayer structure is only 3 pm larger than that of the thick Mo layer.

Fig. 7.
Fig. 7.

Calculated χ(R) distributions for the Mo K-edge for the Mo/Y/Si structures with varying thickness of the Y layer. The inset shows a fit to the measured points for the structure with a 0.4 nm thick Y layer. All datasets were fitted using a modified Mo model obtained from the Mo/Nb multilayer structure and a Mo5Si3 structure.

Fig. 8.
Fig. 8.

Calculated χ(R) distributions for the Y K-edge for the Mo/Y/Si structures with varying thickness of the Y layer. The inset shows a fit to the dataset with a 0.2 nm Y layer using the YSi2 model.

Tables (1)

Tables Icon

Table 1. Overview Samples, Including the Measurement Technique They Were Used fora

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C(R)=σ2exp(Rξ),
PSD=2πσ2ξ2(1+qr2ξ2)3/2.

Metrics