Abstract

Photonic crystal fibers (PCFs) are widely used in all-fiber, high-power lasers and supercontinuum sources. However, the splice loss between PCFs and conventional fibers limits its development. Grin fibers and coreless fibers were used as a fiber lens to achieve low-loss, high-strength splicing between PCFs and single-mode fibers (SMFs). The beam propagation method was used to optimize the lengths of grin fibers and coreless fibers for a minimum splice loss. The splice loss changing with the lengths of grin fiber, coreless fiber, and the air-hole collapsed region was systematically studied theoretically and experimentally. Ultimately, a minimum splice loss of 0.26 dB at 1064 nm was realized between a high-nonlinear PCF and a conventional SMF with this method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  2. C. Y. Guo, S. C. Ruan, P. G. Yan, E. M. Pan, and H. F. Wei, “Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser,” Opt. Express 18, 11046–11051 (2010).
    [CrossRef]
  3. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
    [CrossRef]
  4. P. J. Bennett, T. M. Monro, and D. J. Richardson, “Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization,” Opt. Lett. 24, 1203–1205 (1999).
    [CrossRef]
  5. J. H. Chong and M. K. Rao, “Development of a system for fiber laser splicing photonic crystal fiber,” Opt. Express 11, 1365–1370 (2003).
    [CrossRef]
  6. L. M. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32, 115–117 (2007).
    [CrossRef]
  7. L. M. Xiao, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
    [CrossRef]
  8. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
    [CrossRef]
  9. Z. Chen, C. Xiong, L. M. Xiao, W. J. Wadsworth, and T. A. Birks, “More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing,” Opt. Lett. 34, 2240–2242 (2009).
    [CrossRef]
  10. W. Zhang, L. Zhang, S. Chen, Q. Cai, Y. D. Huang, and J. D. Peng, “Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber,” Chin. J. Lasers 33, 1389–1392 (2006).
  11. Y. P. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16, 7258–7263 (2008).
    [CrossRef]
  12. J. T. Lizier and G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
    [CrossRef]
  13. A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett. 17, 118–120 (2005).
    [CrossRef]
  14. J. Laegsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
    [CrossRef]
  15. R. Scarmozzino and R. M. Osgood, “Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A 8, 724–731 (1991).
    [CrossRef]

2010 (1)

2009 (2)

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[CrossRef]

Z. Chen, C. Xiong, L. M. Xiao, W. J. Wadsworth, and T. A. Birks, “More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing,” Opt. Lett. 34, 2240–2242 (2009).
[CrossRef]

2008 (2)

2007 (2)

2006 (2)

W. Zhang, L. Zhang, S. Chen, Q. Cai, Y. D. Huang, and J. D. Peng, “Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber,” Chin. J. Lasers 33, 1389–1392 (2006).

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2005 (1)

A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett. 17, 118–120 (2005).
[CrossRef]

2004 (1)

J. Laegsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
[CrossRef]

2003 (1)

2001 (1)

J. T. Lizier and G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
[CrossRef]

1999 (1)

1991 (1)

Bartelt, H.

Bennett, P. J.

Birks, T. A.

Bise, R. T.

A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett. 17, 118–120 (2005).
[CrossRef]

Bjarklev, A.

J. Laegsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
[CrossRef]

Brueckner, S.

Cai, Q.

W. Zhang, L. Zhang, S. Chen, Q. Cai, Y. D. Huang, and J. D. Peng, “Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber,” Chin. J. Lasers 33, 1389–1392 (2006).

Chen, S.

W. Zhang, L. Zhang, S. Chen, Q. Cai, Y. D. Huang, and J. D. Peng, “Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber,” Chin. J. Lasers 33, 1389–1392 (2006).

Chen, Z.

Chong, J. H.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Cumberland, B. A.

Demokan, M. S.

Dong, L.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ecke, W.

Fu, L. B.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Guo, C. Y.

Huang, Y. D.

W. Zhang, L. Zhang, S. Chen, Q. Cai, Y. D. Huang, and J. D. Peng, “Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber,” Chin. J. Lasers 33, 1389–1392 (2006).

Jin, W.

Kobelke, J.

Laegsgaard, J.

J. Laegsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
[CrossRef]

Lizier, J. T.

J. T. Lizier and G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
[CrossRef]

Lu, C.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[CrossRef]

Monro, T. M.

Mörl, K.

Osgood, R. M.

Pan, E. M.

Peng, J. D.

W. Zhang, L. Zhang, S. Chen, Q. Cai, Y. D. Huang, and J. D. Peng, “Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber,” Chin. J. Lasers 33, 1389–1392 (2006).

Popov, S. V.

Rao, M. K.

Richardson, D. J.

Rothhardt, M.

Ruan, S. C.

Scarmozzino, R.

Tam, H. Y.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[CrossRef]

Taylor, J. R.

Thomas, B. K.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[CrossRef]

Town, G. E.

J. T. Lizier and G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
[CrossRef]

Travers, J. C.

Tse, M. L. V.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[CrossRef]

Wadsworth, W. J.

Wai, P. K. A.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[CrossRef]

Wang, Y. P.

Wei, H. F.

Willsch, R.

Xiao, L. M.

Xiong, C.

Yablon, A. D.

A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett. 17, 118–120 (2005).
[CrossRef]

Yan, P. G.

Zhang, L.

W. Zhang, L. Zhang, S. Chen, Q. Cai, Y. D. Huang, and J. D. Peng, “Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber,” Chin. J. Lasers 33, 1389–1392 (2006).

Zhang, W.

W. Zhang, L. Zhang, S. Chen, Q. Cai, Y. D. Huang, and J. D. Peng, “Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber,” Chin. J. Lasers 33, 1389–1392 (2006).

Zhao, C. L.

Chin. J. Lasers (1)

W. Zhang, L. Zhang, S. Chen, Q. Cai, Y. D. Huang, and J. D. Peng, “Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber,” Chin. J. Lasers 33, 1389–1392 (2006).

IEEE Photon. Technol. Lett. (3)

J. T. Lizier and G. E. Town, “Splice losses in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 794–796 (2001).
[CrossRef]

A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett. 17, 118–120 (2005).
[CrossRef]

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21, 164–166 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. Laegsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun. 237, 431–435 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Relative refractive index of grin fiber (relative to the index of fiber cladding).

Fig. 2.
Fig. 2.

Experimental setups and the structure of the grin fiber method.

Fig. 3.
Fig. 3.

(a) Gaussian beam propagating in the grin fiber and (b) the MFD variation.

Fig. 4.
Fig. 4.

(a) Splice loss versus the lengths of grin fiber with variations of coreless fiber (L=100μm). (b) Splice loss versus the lengths of coreless fiber with variations of grin fiber (L=100μm). (c) Splice loss versus the lengths of air-hole collapsed region with variations of grin fiber (Ls=200μm). (d) Splice loss versus the lengths of air-hole collapsed region with variations of coreless fiber (Lg=300μm).

Fig. 5.
Fig. 5.

(a) No air-hole collapse and (b) air-hole collapse.

Fig. 6.
Fig. 6.

Experimental results. (a) Splice loss versus the times of arc discharges. (b) Splice loss versus the length of grin fiber. (c) Splice loss versus the length of coreless fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

uz=i2k¯(2ux2+2uy2+(k2k¯2)u).

Metrics