Abstract

The influence to the sensing performance of polarization optical time domain reflectometer (POTDR) by increasing the optical pulse width is analyzed based on wave-plate model and Muller matrices. Simulation and experimental results show that the ability of POTDR to sense external perturbation can be improved by increasing the pulse width of probe light, although the backscattered signal would be temporally depolarized. The depolarization effect is not a limitation to increase the pulse width to improve the signal-to-noise ratio for POTDR. The beat length of fiber can be taken as the critical value for the increase of pulse width.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, “Polarisation optical time domain reflectometry,” Electron. Lett. 16, 489–490 (1980).
    [CrossRef]
  2. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16, 10240–10247 (2008).
    [CrossRef]
  3. M. V. Dashkov, “Localization of optical fiber sections under stress using POTDR,” Proc. SPIE 7026, 70260M(2008).
    [CrossRef]
  4. A. J. Rogers and V. A. Handerek, “Frequency-derived distributed optical-fiber sensing: rayleigh backscatter analysis,” Appl. Opt. 31, 4091–4095 (1992).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  6. B. Huttner, B. Gisin, and N. Gisin, “Distributed PMD measurement with a polarization-OTDR in optical fibers, ” J. Lightwave Technol. 17, 1843–1848 (1999).
    [CrossRef]
  7. F. Corsi, A. Galtarossa, and L. Palmieri, “Analytical treatment of polarization-mode dispersion in single-mode fibers by means of the backscattered signal,” J. Opt. Soc. Am. A 16, 574–583 (1999).
    [CrossRef]
  8. C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
    [CrossRef]
  9. K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron. 17, 862–868 (1981).
    [CrossRef]
  10. R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Academic, 2009), pp. 37–43.
  11. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
    [CrossRef]

2008 (2)

1999 (2)

1994 (1)

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

1992 (1)

1981 (1)

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron. 17, 862–868 (1981).
[CrossRef]

1980 (2)

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
[CrossRef]

A. J. Rogers, “Polarisation optical time domain reflectometry,” Electron. Lett. 16, 489–490 (1980).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Aoyama, K.

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron. 17, 862–868 (1981).
[CrossRef]

Bao, X.

Corsi, F.

Dashkov, M. V.

M. V. Dashkov, “Localization of optical fiber sections under stress using POTDR,” Proc. SPIE 7026, 70260M(2008).
[CrossRef]

Eickhoff, W.

Favin, D. L.

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

Galtarossa, A.

Gisin, B.

Gisin, N.

Handerek, V. A.

Hui, R.

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Academic, 2009), pp. 37–43.

Huttner, B.

Itoh, T.

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron. 17, 862–868 (1981).
[CrossRef]

Nakagawa, K.

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron. 17, 862–868 (1981).
[CrossRef]

O’Sullivan, M.

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Academic, 2009), pp. 37–43.

Palmieri, L.

Poole, C. D.

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

Rashleigh, S. C.

Rogers, A. J.

Ulrich, R.

Zhang, Z.

Appl. Opt. (1)

Electron. Lett. (1)

A. J. Rogers, “Polarisation optical time domain reflectometry,” Electron. Lett. 16, 489–490 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron. 17, 862–868 (1981).
[CrossRef]

J. Lightwave Technol. (2)

B. Huttner, B. Gisin, and N. Gisin, “Distributed PMD measurement with a polarization-OTDR in optical fibers, ” J. Lightwave Technol. 17, 1843–1848 (1999).
[CrossRef]

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

M. V. Dashkov, “Localization of optical fiber sections under stress using POTDR,” Proc. SPIE 7026, 70260M(2008).
[CrossRef]

Other (2)

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier Academic, 2009), pp. 37–43.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Simulation results for a fiber with LR, θ=0, and ϕ=π/4. (a) The solid curve and the dashed curve are the results before and after the external perturbation are applied, respectively. (b) Difference between the solid curve and the dashed curve.

Fig. 2.
Fig. 2.

Normalized amplitude of signal difference induced by perturbation in respect of lP/LB.

Fig. 3.
Fig. 3.

Actual amplitude of signal difference induced by perturbation in respect of lP/LB.

Fig. 4.
Fig. 4.

Simulation results for the signal of the POTDR for different pulse widths. (a) Actual signal difference before and after the perturbation is applied. (b) Enlarged picture of the rectangle in (a).

Fig. 5.
Fig. 5.

Number of the shortest pulse widths that can make the amplitude of signal difference reach to the maximum at the first extreme point after the perturbation position.

Fig. 6.
Fig. 6.

(a) Experiment scheme of the POTDR. (b) Bending of fiber.

Fig. 7.
Fig. 7.

Experiment results for different pulse widths. (a) Actual signal difference. (b) Enlarged picture of the rectangle in (a).

Fig. 8.
Fig. 8.

SNR and maximum amplitude of signal difference of the POTDR for different pulse widths.

Fig. 9.
Fig. 9.

Frequency domain signal obtained by the POTDR for vibration detection. (a) Frequency spectra along fiber for lP=35m. (b) Amplitudes of 9 and 11 Hz signal along the fiber for different pulse widths. The solid curve is for 9 Hz, and the dotted curve is for 11 Hz. (c) Enlarged picture of the rectangle in (b).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

RB=MRTM,
R=R(γ,ϕ,θ)=Rz(θ)Ry(ϕ)Rx(γ)Ry(ϕ)Rz(θ)
Rx(γ)=(1000010000cosγsinγ00sinγcosγ),Ry(ϕ)=(10000cosϕ0sinϕ00100sinϕ0cosϕ),Rz(θ)=(10000cos2θsin2θ00sin2θcos2θ00001),
γ=LR|β|=LR|βL|2+|βC|2.
R(x)=RB1RB2RBN1RB(x)R(x)RN1R2R1,
S0(x)=(xlPxR(x)dx)Si,
SD(x)=PS0(x)=Pi=1mR(x+immlp)Si,
Lf=2km,
LB=60m,
Si=(1,1,0,0)T,
P=12(1100110000000000),
lP=1m,

Metrics