Abstract

We present a gated silicon single-photon detector based on a commercially available avalanche photodiode. Our detector achieves a photon-detection efficiency of 45±5% at 808 nm with 2·106 dark count per nanosecond at 30 V of excess bias and 30°C. We compare gated and free-running detectors and show that this mode of operation has significant advantages in two representative experimental scenarios: detecting a single photon either hidden in faint continuous light or after a strong pulse. We also explore, at different temperatures and incident light intensities, the “charge persistence” effect, whereby a detector clicks some time after having been illuminated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).
  2. A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
    [CrossRef]
  3. A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
    [CrossRef]
  4. A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
    [CrossRef]
  5. N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H. Zbinden, “Faithful entanglement swapping based on sum-frequency generation,” Phys. Rev. Lett. 106, 120403 (2011).
    [CrossRef]
  6. A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
    [CrossRef]
  7. J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum. Electron. 45, 792–799 (2009).
    [CrossRef]
  8. P. Eraerds, M. Legré, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
    [CrossRef]
  9. N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5,” J. Phys. B: At. Mol. Opt. Phys. (2012) (to be published).
  10. P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).
  11. Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y.-H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82, 093110 (2011).
    [CrossRef]
  12. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
    [CrossRef]
  13. Perkin Elmer, “C30902 Series,” available at http://www.perkinelmer.com/CMSResources/Images/44-3477DTS_C30902.pdf .
  14. A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
    [CrossRef]
  15. G. Ripamonti and S. Cova, “Carrier diffusion effects in the time-response of a fast photodiode,” Solid-State Electron. 28, 925–931 (1985).
    [CrossRef]
  16. G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
    [CrossRef]

2012 (1)

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
[CrossRef]

2011 (3)

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[CrossRef]

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y.-H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82, 093110 (2011).
[CrossRef]

N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H. Zbinden, “Faithful entanglement swapping based on sum-frequency generation,” Phys. Rev. Lett. 106, 120403 (2011).
[CrossRef]

2010 (2)

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

P. Eraerds, M. Legré, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
[CrossRef]

2009 (1)

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum. Electron. 45, 792–799 (2009).
[CrossRef]

2007 (1)

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[CrossRef]

2004 (1)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

2002 (1)

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

1997 (1)

A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
[CrossRef]

1985 (1)

G. Ripamonti and S. Cova, “Carrier diffusion effects in the time-response of a fast photodiode,” Solid-State Electron. 28, 925–931 (1985).
[CrossRef]

1979 (1)

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

1974 (1)

P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Afzelius, M.

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5,” J. Phys. B: At. Mol. Opt. Phys. (2012) (to be published).

Bois, D.

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

Bouwmeester, D.

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Chantre, A.

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

Conradi, J.

P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Contini, D.

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[CrossRef]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

Cova, S.

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

G. Ripamonti and S. Cova, “Carrier diffusion effects in the time-response of a fast photodiode,” Solid-State Electron. 28, 925–931 (1985).
[CrossRef]

Cubeddu, R.

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[CrossRef]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

Curtz, N.

N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H. Zbinden, “Faithful entanglement swapping based on sum-frequency generation,” Phys. Rev. Lett. 106, 120403 (2011).
[CrossRef]

Dalla Mora, A.

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[CrossRef]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

Eraerds, P.

Gautier, J. D.

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum. Electron. 45, 792–799 (2009).
[CrossRef]

Gautier, J.-D.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[CrossRef]

Ghioni, M.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

Gisin, N.

N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H. Zbinden, “Faithful entanglement swapping based on sum-frequency generation,” Phys. Rev. Lett. 106, 120403 (2011).
[CrossRef]

P. Eraerds, M. Legré, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
[CrossRef]

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum. Electron. 45, 792–799 (2009).
[CrossRef]

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5,” J. Phys. B: At. Mol. Opt. Phys. (2012) (to be published).

Gulinatti, A.

Howell, J. C.

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Jeong, Y. C.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y.-H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82, 093110 (2011).
[CrossRef]

Kim, Y. S.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y.-H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82, 093110 (2011).
[CrossRef]

Kim, Y.-H.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y.-H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82, 093110 (2011).
[CrossRef]

Lacaita, A. L.

A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
[CrossRef]

Lamas-Linares, A.

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Lauritzen, B.

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5,” J. Phys. B: At. Mol. Opt. Phys. (2012) (to be published).

Legré, M.

Lotito, A.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

Makarov, V.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y.-H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82, 093110 (2011).
[CrossRef]

McIntyre, R. J.

P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Pifferi, A.

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[CrossRef]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

Rech, I.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

Ripamonti, G.

G. Ripamonti and S. Cova, “Carrier diffusion effects in the time-response of a fast photodiode,” Solid-State Electron. 28, 925–931 (1985).
[CrossRef]

Rochas, A.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[CrossRef]

Sangouard, N.

N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H. Zbinden, “Faithful entanglement swapping based on sum-frequency generation,” Phys. Rev. Lett. 106, 120403 (2011).
[CrossRef]

Sanguinetti, B.

N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H. Zbinden, “Faithful entanglement swapping based on sum-frequency generation,” Phys. Rev. Lett. 106, 120403 (2011).
[CrossRef]

Sauge, S.

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y.-H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82, 093110 (2011).
[CrossRef]

Simon, C.

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Spinelli, A.

A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
[CrossRef]

Spinelli, L.

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[CrossRef]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

Stucki, D.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[CrossRef]

Thew, R.

N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H. Zbinden, “Faithful entanglement swapping based on sum-frequency generation,” Phys. Rev. Lett. 106, 120403 (2011).
[CrossRef]

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum. Electron. 45, 792–799 (2009).
[CrossRef]

Thew, R. T.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[CrossRef]

Timoney, N.

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5,” J. Phys. B: At. Mol. Opt. Phys. (2012) (to be published).

Torricelli, A.

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[CrossRef]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

Tosi, A.

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[CrossRef]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

Usmani, I.

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5,” J. Phys. B: At. Mol. Opt. Phys. (2012) (to be published).

Vincent, G.

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

Webb, P. P.

P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Zappa, F.

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19, 10735–10746 (2011).
[CrossRef]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

Zbinden, H.

N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H. Zbinden, “Faithful entanglement swapping based on sum-frequency generation,” Phys. Rev. Lett. 106, 120403 (2011).
[CrossRef]

P. Eraerds, M. Legré, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
[CrossRef]

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum. Electron. 45, 792–799 (2009).
[CrossRef]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[CrossRef]

Zhang, J.

P. Eraerds, M. Legré, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
[CrossRef]

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum. Electron. 45, 792–799 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
[CrossRef]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[CrossRef]

IEEE J. Quantum. Electron. (1)

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum. Electron. 45, 792–799 (2009).
[CrossRef]

IEEE Sel. Top. Quantum. Electron. (1)

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE Sel. Top. Quantum. Electron. 16, 1023–1030 (2010).
[CrossRef]

IEEE Trans. Electron. Devices (1)

A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
[CrossRef]

J. Appl. Phys. (1)

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).

Opt. Express (1)

Phys. Rev. Lett. (1)

N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H. Zbinden, “Faithful entanglement swapping based on sum-frequency generation,” Phys. Rev. Lett. 106, 120403 (2011).
[CrossRef]

RCA Rev. (1)

P. P. Webb, R. J. McIntyre, and J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Rev. Sci. Instrum. (1)

Y. S. Kim, Y. C. Jeong, S. Sauge, V. Makarov, and Y.-H. Kim, “Ultra-low noise single-photon detector based on Si avalanche photodiode,” Rev. Sci. Instrum. 82, 093110 (2011).
[CrossRef]

Science (1)

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Solid-State Electron. (1)

G. Ripamonti and S. Cova, “Carrier diffusion effects in the time-response of a fast photodiode,” Solid-State Electron. 28, 925–931 (1985).
[CrossRef]

Other (2)

Perkin Elmer, “C30902 Series,” available at http://www.perkinelmer.com/CMSResources/Images/44-3477DTS_C30902.pdf .

N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin wave storage in 153Eu3+:Y2SiO5,” J. Phys. B: At. Mol. Opt. Phys. (2012) (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental scenarios where a gated detector plays an essential role. (a) Applying a gate ensures that the detector is active when the photon of interest arrives, even if the detector is constantly being illuminated. (b) Applying a gate ensures that the detector is not blinded by the preceding strong pulse.

Fig. 2.
Fig. 2.

(a) Electrical circuit. (b) Avalanche measured with a 500 MHz oscilloscope. (c) No avalanche; the derivative peaks at 20 and 0 ns have 150mV of amplitude.

Fig. 3.
Fig. 3.

Detection efficiency (at 808 nm) and dark-count probability per gate (20 ns) as a function of the excess bias Vexc=VbiasVbd at temperatures of 23 and 30°C.

Fig. 4.
Fig. 4.

Counts due to persistence noise as a function of the delay between the falling edge of the gate and the laser pulse (see inset) for different pulse energies (wavelength=655nm, repetition rate of 10 kHz). The black dotted line indicates the intrinsic dark-count rate.

Fig. 5.
Fig. 5.

(a) Counts due to persistence noise as a function of the delay between the gate and the laser pulse for two different temperatures, i.e., 20 and 40°C (wavelength=655nm, repetition rate of 10 kHz). (b) Same measurement after subtraction of the dark counts.

Fig. 6.
Fig. 6.

Scenario (A): detection probability versus average number of photon per Δt, for the different operational modes. E.g., for Δt=32ns, μ=5 corresponds to 47 pW (156·106photons/s).

Fig. 7.
Fig. 7.

Scenario (B): avalanche-triggering probability per nanosecond versus the delay between the falling edge of the gate and the laser pulse (wavelength=808nm, repetition rate of 10 kHz). In red curve, the gated module for different number of photons per pulse. In black curve, the free-running module (FRPE) for 1000 photons per pulse. The red (black) arrow indicates the intrinsic dark-count probability for the gated (FRPE) module. Inset: setup for time-resolved characterization.

Fig. 8.
Fig. 8.

Avalanche-triggering probability per nanosecond versus the delay between the falling edge of the gate and the laser pulse (wavelength=655nm, repetition rate of 10 kHz) for a thin diode by ID Quantique driven in free-running mode with 1000 photons per pulse and in gated mode with 20000/2000/50 photons per pulse. The arrows indicate the level of the intrinsic noise.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

pdet=ηn=0p(nμ)(1pdet)n,

Metrics