Abstract

We describe a low-cost, compact, and efficient Cr3+:LiCaAlF6 (Cr:LiCAF) laser that is broadly tunable in the near infrared (746–887 nm) and blue/ultraviolet (375–433 nm) regions of the optical spectrum. The pump source is a 660 nm single-mode-diode with 145 mW of output power. A melt-grown Cr:LiCAF crystal with an extremely high figure of merit above 2000 was used as the gain medium. This enabled the construction of a high-Q-cavity with continuous wave (cw) lasing thresholds as low as 3 mW, slope efficiencies as high as 54%, and output powers up to 63 mW. The stored intracavity power levels were above 30 W. By placing a beta-barium-borate crystal at a second intracavity focus, we could obtain tunable cw blue/ultraviolet radiation with output powers up to 3.5 mW around 400 nm. When mode-locked using a saturable Bragg reflector around 800 nm, the Cr:LiCAF laser produced 95 fs pulses with average powers of 33 mW and peak powers of 3.58 kW at a repetition rate of 85.5 MHz. Extracavity second harmonic generation enables generation of femtosecond pulses around 400 nm. These results demonstrate the possibility to grow Cr:LiCAF crystals with passive losses below 0.15% per cm, which enables construction of low-cost and complexity systems that are pumped only with one low-power single-mode-diode.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).
  2. S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
    [CrossRef]
  3. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77–84 (2008).
    [CrossRef]
  4. R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Topics Quantum Electron. 3, 1100–1102 (1997).
    [CrossRef]
  5. A. J. S. McGonigle, D. W. Coutts, and C. E. Webb, “530 mW 7 kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999).
    [CrossRef]
  6. A. J. S. McGonigle, S. Girard, D. W. Coutts, and R. Moncorgé, “10 kHz continuously tunable Ce:LiLuF laser,” Electron. Lett. 35, 1640–1641 (1999).
    [CrossRef]
  7. J. F. Pinto, L. Esterowitz, and G. J. Quarles, “High performance Ce :LiSrAlF/LiCaAlF lasers with extended tunability,” Electron. Lett. 31, 2009–2010 (1995).
    [CrossRef]
  8. Z. Quan, Y. Yi, L. Bin, Q. Dapeng, and Z. Ling, “13.2 W laser-diode-pumped Nd:YVO4/LBO blue laser at 457 nm,” J. Opt. Soc. Am. B 26, 1238–1242 (2009).
    [CrossRef]
  9. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
    [CrossRef]
  10. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
    [CrossRef]
  11. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
    [CrossRef]
  12. B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584–1586(1992).
    [CrossRef]
  13. L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, and D. J. Nelson, “Laser emission from the transition-metal compound LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
    [CrossRef]
  14. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820–822 (1991).
    [CrossRef]
  15. G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639–1641 (1997).
    [CrossRef]
  16. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Topics Quantum Electron. 1, 58–61 (1995).
    [CrossRef]
  17. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kartner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009).
    [CrossRef]
  18. U. Demirbas, S. Eggert, and A. Leitenstorfer, “Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach,” J. Opt. Soc. Am. B 29, 1894–1903 (2012).
    [CrossRef]
  19. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14 fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997).
    [CrossRef]
  20. S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr : LiSAF laser,” Jpn. J. Appl. Phys. 39, 3472–3473 (2000).
    [CrossRef]
  21. P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G. Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10 fs pulses from a Kerr-lens modelocked Cr3+:LiCAF laser oscillator using third order dispersion compensating double chirped mirrors,” Opt. Lett. 27, 1726–1729 (2002).
    [CrossRef]
  22. E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and its Applications, F. X. Kärtner, ed. (Springer-Verlag, 2004), pp. 3–71.
  23. F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Physique 8, 153–164 (2007).
    [CrossRef]
  24. J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360–368 (2002).
    [CrossRef]
  25. P. Laperle, K. J. Snell, A. Chandonnet, P. Galarneau, and R. Vallée, “Tunable diode-pumped and frequency-doubled Cr:LiSAF lasers,” Appl. Opt. 36, 5053–5057 (1997).
    [CrossRef]
  26. F. Falcoz, F. Balembois, P. Georges, A. Brun, and D. Rytz, “All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser,” Opt. Lett. 20, 1274–1276 (1995).
    [CrossRef]
  27. J. M. Eichenholz, M. Richardson, and G. Mizell, “Diode pumped, frequency doubled LiSAF microlaser,” Opt. Commun. 153, 263–266 (1998).
  28. S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 120-C, 910–915 (2002).
  29. F. Balembois, P. Georges, F. Georges, G. Roger, and A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
    [CrossRef]
  30. C.-S. Chen, Y.-S. Zhang, J.-W. Yu, J. Fang, and S.-H. Liu, “Experimental study on dual wavelength and dual pulse Q-switched frequency doubling on a tunable Cr:LiSAF laser,” Chin. Phys. Lett. 26, 0942061 (2009).
    [CrossRef]
  31. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
    [CrossRef]
  32. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
    [CrossRef]
  33. B. Agate, A. J. Kemp, C. T. A. Brown, and W. Sibbett, “Efficient, high repetition-rate femtosecond blue source using a compact Cr:LiSAF laser,” Opt. Express 10, 824–831 (2002).
    [CrossRef]
  34. J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
    [CrossRef]
  35. G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221–1227 (1999).
    [CrossRef]
  36. D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145–152 (1999).
    [CrossRef]
  37. D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
    [CrossRef]
  38. D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr : LiCaAlF6 and Cr : LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683–693 (2000).
    [CrossRef]
  39. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
    [CrossRef]
  40. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992).
    [CrossRef]
  41. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
    [CrossRef]
  42. J. K. Jabczynski, W. Zendzian, Z. Mierczyk, and Z. Frukacz, “Chromium-doped LiCAF laser passively Q switched with a V3+:YAG crystal,” Appl. Opt. 40, 6638–6645 (2001).
    [CrossRef]
  43. A. Agnesi, F. Pirzio, and G. Reali, “Low-threshold femtosecond Nd:glass laser,” Opt. Express 17, 9171–9176 (2009).
    [CrossRef]
  44. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
    [CrossRef]
  45. J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3 μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
    [CrossRef]
  46. U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+:LiCAF lasers,” J. Opt. Soc. Am. B 26, 64–79 (2009).
    [CrossRef]
  47. A. Isemann and C. Fallnich, “High-power colquiriite laser with high slope efficiencies pumped by broad-area laser diodes,” Opt. Express 11, 259–264 (2003).
    [CrossRef]
  48. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34, 3334–3336 (2009).
    [CrossRef]
  49. D. Li, U. Demirbas, A. Benedick, A. Sennaroglu, J. G. Fujimoto, and F. X. Kärtner, “Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers,” Opt. Express 20, 23422–23435 (2012).
    [CrossRef]
  50. P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF and Cr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259–1266 (1994).
    [CrossRef]
  51. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Topics Quantum Electron. 2, 454–464 (1996).
    [CrossRef]
  52. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  53. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
    [CrossRef]
  54. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
    [CrossRef]

2012 (2)

2009 (6)

2008 (1)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77–84 (2008).
[CrossRef]

2007 (1)

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Physique 8, 153–164 (2007).
[CrossRef]

2005 (1)

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
[CrossRef]

2004 (1)

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

2003 (2)

2002 (4)

B. Agate, A. J. Kemp, C. T. A. Brown, and W. Sibbett, “Efficient, high repetition-rate femtosecond blue source using a compact Cr:LiSAF laser,” Opt. Express 10, 824–831 (2002).
[CrossRef]

P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G. Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10 fs pulses from a Kerr-lens modelocked Cr3+:LiCAF laser oscillator using third order dispersion compensating double chirped mirrors,” Opt. Lett. 27, 1726–1729 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360–368 (2002).
[CrossRef]

S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 120-C, 910–915 (2002).

2001 (1)

2000 (2)

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr : LiCaAlF6 and Cr : LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683–693 (2000).
[CrossRef]

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr : LiSAF laser,” Jpn. J. Appl. Phys. 39, 3472–3473 (2000).
[CrossRef]

1999 (5)

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221–1227 (1999).
[CrossRef]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145–152 (1999).
[CrossRef]

A. J. S. McGonigle, S. Girard, D. W. Coutts, and R. Moncorgé, “10 kHz continuously tunable Ce:LiLuF laser,” Electron. Lett. 35, 1640–1641 (1999).
[CrossRef]

A. J. S. McGonigle, D. W. Coutts, and C. E. Webb, “530 mW 7 kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999).
[CrossRef]

1998 (2)

J. M. Eichenholz, M. Richardson, and G. Mizell, “Diode pumped, frequency doubled LiSAF microlaser,” Opt. Commun. 153, 263–266 (1998).

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

1997 (5)

1996 (3)

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Topics Quantum Electron. 2, 454–464 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

1995 (4)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

F. Falcoz, F. Balembois, P. Georges, A. Brun, and D. Rytz, “All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser,” Opt. Lett. 20, 1274–1276 (1995).
[CrossRef]

J. F. Pinto, L. Esterowitz, and G. J. Quarles, “High performance Ce :LiSrAlF/LiCaAlF lasers with extended tunability,” Electron. Lett. 31, 2009–2010 (1995).
[CrossRef]

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Topics Quantum Electron. 1, 58–61 (1995).
[CrossRef]

1994 (1)

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF and Cr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259–1266 (1994).
[CrossRef]

1993 (1)

1992 (4)

B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584–1586(1992).
[CrossRef]

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

F. Balembois, P. Georges, F. Georges, G. Roger, and A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

1991 (2)

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820–822 (1991).
[CrossRef]

1989 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

1988 (1)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

1975 (1)

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3 μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Agate, B.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360–368 (2002).
[CrossRef]

B. Agate, A. J. Kemp, C. T. A. Brown, and W. Sibbett, “Efficient, high repetition-rate femtosecond blue source using a compact Cr:LiSAF laser,” Opt. Express 10, 824–831 (2002).
[CrossRef]

Agnesi, A.

Angelow, G.

Atherton, L. J.

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

Balakrishnan, K.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77–84 (2008).
[CrossRef]

Balembois, F.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Physique 8, 153–164 (2007).
[CrossRef]

F. Falcoz, F. Balembois, P. Georges, A. Brun, and D. Rytz, “All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser,” Opt. Lett. 20, 1274–1276 (1995).
[CrossRef]

F. Balembois, P. Georges, F. Georges, G. Roger, and A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Bass, M.

Battle, P.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
[CrossRef]

Beach, R. J.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
[CrossRef]

Beaud, P.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF and Cr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259–1266 (1994).
[CrossRef]

Benedick, A.

Bin, L.

Birge, J. R.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Brovelli, L. R.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Brown, C. T. A.

Brun, A.

F. Falcoz, F. Balembois, P. Georges, A. Brun, and D. Rytz, “All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser,” Opt. Lett. 20, 1274–1276 (1995).
[CrossRef]

F. Balembois, P. Georges, F. Georges, G. Roger, and A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Burns, D.

Caird, J. A.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3 μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

Calasso, I.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Cassanho, A.

Chai, B. H. T.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF and Cr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259–1266 (1994).
[CrossRef]

B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584–1586(1992).
[CrossRef]

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

Chandonnet, A.

Chase, L. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Chen, C.-S.

C.-S. Chen, Y.-S. Zhang, J.-W. Yu, J. Fang, and S.-H. Liu, “Experimental study on dual wavelength and dual pulse Q-switched frequency doubling on a tunable Cr:LiSAF laser,” Chin. Phys. Lett. 26, 0942061 (2009).
[CrossRef]

Chen, Y. F.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF and Cr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259–1266 (1994).
[CrossRef]

Clarkson, W. A.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Topics Quantum Electron. 3, 1100–1102 (1997).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Coutts, D. W.

A. J. S. McGonigle, D. W. Coutts, and C. E. Webb, “530 mW 7 kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999).
[CrossRef]

A. J. S. McGonigle, S. Girard, D. W. Coutts, and R. Moncorgé, “10 kHz continuously tunable Ce:LiLuF laser,” Electron. Lett. 35, 1640–1641 (1999).
[CrossRef]

Cundiff, S. T.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Topics Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Topics Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Dapeng, Q.

DeLoach, L. D.

Demirbas, U.

derAu, J. A.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

DeShazer, L. G.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3 μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

Deyoreo, J. J.

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

Druon, F.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Physique 8, 153–164 (2007).
[CrossRef]

Eggert, S.

Eichenholz, J. M.

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

J. M. Eichenholz, M. Richardson, and G. Mizell, “Diode pumped, frequency doubled LiSAF microlaser,” Opt. Commun. 153, 263–266 (1998).

Emanuel, M. A.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
[CrossRef]

Esterowitz, L.

J. F. Pinto, L. Esterowitz, and G. J. Quarles, “High performance Ce :LiSrAlF/LiCaAlF lasers with extended tunability,” Electron. Lett. 31, 2009–2010 (1995).
[CrossRef]

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Topics Quantum Electron. 1, 58–61 (1995).
[CrossRef]

Falcoz, F.

Fallnich, C.

Fang, J.

C.-S. Chen, Y.-S. Zhang, J.-W. Yu, J. Fang, and S.-H. Liu, “Experimental study on dual wavelength and dual pulse Q-switched frequency doubling on a tunable Cr:LiSAF laser,” Chin. Phys. Lett. 26, 0942061 (2009).
[CrossRef]

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Frukacz, Z.

Fry, T.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
[CrossRef]

Fujimoto, J. G.

Galarneau, P.

Georges, F.

F. Balembois, P. Georges, F. Georges, G. Roger, and A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Georges, P.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Physique 8, 153–164 (2007).
[CrossRef]

F. Falcoz, F. Balembois, P. Georges, A. Brun, and D. Rytz, “All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser,” Opt. Lett. 20, 1274–1276 (1995).
[CrossRef]

F. Balembois, P. Georges, F. Georges, G. Roger, and A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Girard, S.

A. J. S. McGonigle, S. Girard, D. W. Coutts, and R. Moncorgé, “10 kHz continuously tunable Ce:LiLuF laser,” Electron. Lett. 35, 1640–1641 (1999).
[CrossRef]

Grawert, F.

Hahnert, I.

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221–1227 (1999).
[CrossRef]

Hanna, D. C.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Topics Quantum Electron. 3, 1100–1102 (1997).
[CrossRef]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Hönninger, C.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

Hopkins, J. M.

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360–368 (2002).
[CrossRef]

G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639–1641 (1997).
[CrossRef]

Isemann, A.

Iwasa, N.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

Jabczynski, J. K.

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Topics Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Jenssen, H. P.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kamp, M.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Kartner, F. X.

U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kartner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kärtner, F. X.

Katona, T.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77–84 (2008).
[CrossRef]

Keller, U.

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360–368 (2002).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Kemp, A. J.

Kennedy, G. T.

Khan, A.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77–84 (2008).
[CrossRef]

Kiyoku, H.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

Klimm, D.

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
[CrossRef]

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr : LiCaAlF6 and Cr : LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683–693 (2000).
[CrossRef]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145–152 (1999).
[CrossRef]

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221–1227 (1999).
[CrossRef]

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Topics Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Kolodziejski, L. A.

Kopf, D.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Koynov, K.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

Krupke, W. F.

L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, and D. J. Nelson, “Laser emission from the transition-metal compound LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Kway, W. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

Lacayo, G.

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr : LiCaAlF6 and Cr : LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683–693 (2000).
[CrossRef]

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221–1227 (1999).
[CrossRef]

Laperle, P.

Laurell, F.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

Lederer, M. J.

Lefaucheur, J.-L.

Leitenstorfer, A.

Li, D.

Ling, Z.

Liu, S.-H.

C.-S. Chen, Y.-S. Zhang, J.-W. Yu, J. Fang, and S.-H. Liu, “Experimental study on dual wavelength and dual pulse Q-switched frequency doubling on a tunable Cr:LiSAF laser,” Chin. Phys. Lett. 26, 0942061 (2009).
[CrossRef]

Long, M.

Loza-Alvarez, P.

Maclean, A. J.

Makio, S.

S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 120-C, 910–915 (2002).

Matsumoto, H.

S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 120-C, 910–915 (2002).

Matsushita, T.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Maze, G.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Topics Quantum Electron. 3, 1100–1102 (1997).
[CrossRef]

McGonigle, A. J. S.

A. J. S. McGonigle, D. W. Coutts, and C. E. Webb, “530 mW 7 kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999).
[CrossRef]

A. J. S. McGonigle, S. Girard, D. W. Coutts, and R. Moncorgé, “10 kHz continuously tunable Ce:LiLuF laser,” Electron. Lett. 35, 1640–1641 (1999).
[CrossRef]

Mierczyk, Z.

Miyamoto, A.

S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 120-C, 910–915 (2002).

Mizell, G.

J. M. Eichenholz, M. Richardson, and G. Mizell, “Diode pumped, frequency doubled LiSAF microlaser,” Opt. Commun. 153, 263–266 (1998).

Moncorgé, R.

A. J. S. McGonigle, S. Girard, D. W. Coutts, and R. Moncorgé, “10 kHz continuously tunable Ce:LiLuF laser,” Electron. Lett. 35, 1640–1641 (1999).
[CrossRef]

Moore, N.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Topics Quantum Electron. 3, 1100–1102 (1997).
[CrossRef]

Morgner, U.

Morier-Genoud, F.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

Morris, R.

Morris, R. C.

Moser, M.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
[CrossRef]

Myers, J. F.

Nagahama, S.-i.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

Nakamura, S.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

Nella, J.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3 μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

Nelson, D. J.

Neumann, W.

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221–1227 (1999).
[CrossRef]

Newkirk, H. W.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Noonan, E.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
[CrossRef]

O’Dell, E. W.

Paschotta, R.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Topics Quantum Electron. 3, 1100–1102 (1997).
[CrossRef]

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).

Payne, S. A.

L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, and D. J. Nelson, “Laser emission from the transition-metal compound LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Petrich, G. S.

Pinto, J. F.

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Topics Quantum Electron. 1, 58–61 (1995).
[CrossRef]

J. F. Pinto, L. Esterowitz, and G. J. Quarles, “High performance Ce :LiSrAlF/LiCaAlF lasers with extended tunability,” Electron. Lett. 31, 2009–2010 (1995).
[CrossRef]

Pirzio, F.

Quan, Z.

Quarles, G. J.

J. F. Pinto, L. Esterowitz, and G. J. Quarles, “High performance Ce :LiSrAlF/LiCaAlF lasers with extended tunability,” Electron. Lett. 31, 2009–2010 (1995).
[CrossRef]

Rafailov, E. U.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
[CrossRef]

Reali, G.

Reiche, P.

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
[CrossRef]

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr : LiCaAlF6 and Cr : LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683–693 (2000).
[CrossRef]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145–152 (1999).
[CrossRef]

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221–1227 (1999).
[CrossRef]

Richardson, M.

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

J. M. Eichenholz, M. Richardson, and G. Mizell, “Diode pumped, frequency doubled LiSAF microlaser,” Opt. Commun. 153, 263–266 (1998).

Richardson, M. C.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF and Cr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259–1266 (1994).
[CrossRef]

Roberts, D. H.

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

Roberts, T.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

Roger, G.

F. Balembois, P. Georges, F. Georges, G. Roger, and A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Rosenberg, A.

Rosenblatt, G. H.

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Topics Quantum Electron. 1, 58–61 (1995).
[CrossRef]

Roth, P. W.

Rytz, D.

Saltiel, S. M.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
[CrossRef]

Sasaki, T.

S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 120-C, 910–915 (2002).

Sato, M.

S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 120-C, 910–915 (2002).

Scheps, R.

Scheuer, V.

Sennaroglu, A.

Senoh, M.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

Serreze, H. B.

Sibbett, W.

Skidmore, J. A.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
[CrossRef]

Smith, L. K.

L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, and D. J. Nelson, “Laser emission from the transition-metal compound LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Snell, K. J.

Sorokin, E.

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14 fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997).
[CrossRef]

E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and its Applications, F. X. Kärtner, ed. (Springer-Verlag, 2004), pp. 3–71.

Sorokina, I. T.

Stalder, M.

Sugimoto, Y.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

Szipocs, R.

Tiihonen, M.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

Torizuka, K.

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr : LiSAF laser,” Jpn. J. Appl. Phys. 39, 3472–3473 (2000).
[CrossRef]

Tropper, A. C.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Topics Quantum Electron. 3, 1100–1102 (1997).
[CrossRef]

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Topics Quantum Electron. 2, 454–464 (1996).
[CrossRef]

Uecker, R.

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
[CrossRef]

Uemura, S.

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr : LiSAF laser,” Jpn. J. Appl. Phys. 39, 3472–3473 (2000).
[CrossRef]

Valentine, G. J.

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360–368 (2002).
[CrossRef]

G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639–1641 (1997).
[CrossRef]

Vallée, R.

Valster, A.

Wagenblast, P.

Wang, S. H.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

Webb, C. E.

Weingarten, K. J.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Wintner, E.

Yamada, T.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

Yi, Y.

Yu, J.-W.

C.-S. Chen, Y.-S. Zhang, J.-W. Yu, J. Fang, and S.-H. Liu, “Experimental study on dual wavelength and dual pulse Q-switched frequency doubling on a tunable Cr:LiSAF laser,” Chin. Phys. Lett. 26, 0942061 (2009).
[CrossRef]

Zendzian, W.

Zhang, G.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
[CrossRef]

Zhang, Y.-S.

C.-S. Chen, Y.-S. Zhang, J.-W. Yu, J. Fang, and S.-H. Liu, “Experimental study on dual wavelength and dual pulse Q-switched frequency doubling on a tunable Cr:LiSAF laser,” Chin. Phys. Lett. 26, 0942061 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

F. Balembois, P. Georges, F. Georges, G. Roger, and A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

C. R. Physique (1)

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Physique 8, 153–164 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

C.-S. Chen, Y.-S. Zhang, J.-W. Yu, J. Fang, and S.-H. Liu, “Experimental study on dual wavelength and dual pulse Q-switched frequency doubling on a tunable Cr:LiSAF laser,” Chin. Phys. Lett. 26, 0942061 (2009).
[CrossRef]

Cryst. Res. Technol. (3)

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221–1227 (1999).
[CrossRef]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145–152 (1999).
[CrossRef]

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352–358 (2005).
[CrossRef]

Electr. Eng. Jpn. (1)

S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 120-C, 910–915 (2002).

Electron. Lett. (2)

A. J. S. McGonigle, S. Girard, D. W. Coutts, and R. Moncorgé, “10 kHz continuously tunable Ce:LiLuF laser,” Electron. Lett. 35, 1640–1641 (1999).
[CrossRef]

J. F. Pinto, L. Esterowitz, and G. J. Quarles, “High performance Ce :LiSrAlF/LiCaAlF lasers with extended tunability,” Electron. Lett. 31, 2009–2010 (1995).
[CrossRef]

IEEE J. Quantum Electron. (6)

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360–368 (2002).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3 μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975).
[CrossRef]

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF and Cr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259–1266 (1994).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (5)

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Topics Quantum Electron. 2, 454–464 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996).
[CrossRef]

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Topics Quantum Electron. 10, 1268–1276 (2004).
[CrossRef]

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Topics Quantum Electron. 1, 58–61 (1995).
[CrossRef]

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Topics Quantum Electron. 3, 1100–1102 (1997).
[CrossRef]

J. Appl. Phys. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

J. Cryst. Growth (2)

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991).
[CrossRef]

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr : LiCaAlF6 and Cr : LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683–693 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (2)

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[CrossRef]

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr : LiSAF laser,” Jpn. J. Appl. Phys. 39, 3472–3473 (2000).
[CrossRef]

Nat. Photonics (1)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2, 77–84 (2008).
[CrossRef]

Opt. Commun. (1)

J. M. Eichenholz, M. Richardson, and G. Mizell, “Diode pumped, frequency doubled LiSAF microlaser,” Opt. Commun. 153, 263–266 (1998).

Opt. Eng. (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Opt. Express (5)

Opt. Lett. (10)

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28, 1963–1965 (2003).
[CrossRef]

P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34, 3334–3336 (2009).
[CrossRef]

P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G. Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10 fs pulses from a Kerr-lens modelocked Cr3+:LiCAF laser oscillator using third order dispersion compensating double chirped mirrors,” Opt. Lett. 27, 1726–1729 (2002).
[CrossRef]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820–822 (1991).
[CrossRef]

B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584–1586(1992).
[CrossRef]

L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, and D. J. Nelson, “Laser emission from the transition-metal compound LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
[CrossRef]

F. Falcoz, F. Balembois, P. Georges, A. Brun, and D. Rytz, “All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser,” Opt. Lett. 20, 1274–1276 (1995).
[CrossRef]

G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639–1641 (1997).
[CrossRef]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14 fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997).
[CrossRef]

A. J. S. McGonigle, D. W. Coutts, and C. E. Webb, “530 mW 7 kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999).
[CrossRef]

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Other (2)

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).

E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and its Applications, F. X. Kärtner, ed. (Springer-Verlag, 2004), pp. 3–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the cw Cr:LiCAF laser setup. The x cavity is end-pumped by one 145 mW single-spatial-mode diode (SMD) at 660 nm.

Fig. 2.
Fig. 2.

Continuous-wave power efficiency curves for the Cr:LiCAF laser taken at 0.1%, 0.5%, 0.9%, 1.6%, 2.8%, and 4.75% output coupling.

Fig. 3.
Fig. 3.

Left axis: measured variation lasing threshold (Pth) with OC transmission T. The round-trip passive cavity loss L was estimated to be (0.15±0.05)% using Findlay–Clay analysis. Right axis: measured variation of the maximum obtainable cw laser output power with output coupling at 135 mW of absorbed pump power.

Fig. 4.
Fig. 4.

Measured variation of the inverse of the slope efficiency (1/η) with the inverse of the output coupling percentage (1/T). Employing Caird analysis, we have estimated the round-trip passive cavity loss (L) and intrinsic slope efficiency (η0) to be (0.1±0.05)% and (60±10)%, respectively. Note that some of the experimental points were excluded in the calculation (empty squares) due to the presence of Auger upconversion process. See the relevant text for a more detailed discussion.

Fig. 5.
Fig. 5.

Continuous-wave tuning curves of Cr:LiCAF laser taken with 0.1% (746–879 nm) and 0.5% (750–871 nm) OCs. Using a cavity with all HR optics, a cw tuning range extending from 746 to 887 nm has also been demonstrated (not shown in the figure). Unpolarized emission and TM polarized absorption spectra of Cr:LiCAF gain medium are also shown. Self-absorption losses limit tuning below 746 nm.

Fig. 6.
Fig. 6.

Schematic of the intracavity cw blue generation experiments with the one single-spatial-mode diode (SMD) pumped Cr:LiCAF laser system.

Fig. 7.
Fig. 7.

Continuous-wave tuning curves of the intracavity frequency doubled one SMD pumped Cr:LiCAF laser. The cw blue light is tunable from 375 to 433 nm (58 nm) with optical powers up to 3 mW around 400 nm.

Fig. 8.
Fig. 8.

Schematic of the one single-spatial-mode diode (SMD) pumped Cr:LiCAF laser that was practiced in mode-locking experiments. SBR: saturable Bragg reflector.

Fig. 9.
Fig. 9.

(a) Optical spectrum, (b) background-free intensity autocorrelation trace, and (c), (d) microwave spectrum for the 95 fs, 385 pJ pulses centered around 808 nm from the Cr:LiCAF laser. This cavity had an OC of 0.5% and a repetition rate of 85.5 MHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pth=π(wp2+wc2)hvp4(σeσESA)τfηp(2Ag+T+L).
η=[(hvlhvp)ηp(σeσESAσe)]TT+L=η0TT+L,
EP,c=hνl(mσem)Aeff,LFsat,AAeff,AΔR,

Metrics