Abstract

This paper investigates characteristics of polarization in non-line-of-sight (NLOS) ultraviolet (UV) communication channels based on a vectorized polarization-sensitive model of NLOS multiple-scatter propagation. The degree of polarization has been analyzed from the following factors: elevation angles, beam angle, field-of-view, off-axis angles, and baseline distance, etc. We draw conclusions that will guide the design of polarization multiplexing technology in NLOS UV communication systems. Outdoor experimentation has validated that this technology is useful to improve the data rate.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Y. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008).
    [CrossRef]
  2. G. Chen, Z. Y. Xu, H. P. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009).
    [CrossRef]
  3. Z. Y. Xu, H. P. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008).
    [CrossRef]
  4. G. Chen, Z. Y. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18, 10500–10509 (2010).
    [CrossRef]
  5. G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report (U. S. Naval Research Laboratory, 1964).
  6. D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M. S. thesis (Naval Postgraduate School, 1977).
  7. J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” in Proceedings of the Tactical Communications Conference (IEEE, 1990), pp. 253–267.
  8. D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470(1979).
    [CrossRef]
  9. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972 (1991).
    [CrossRef]
  10. H. W. Yin, S. L. Chang, X. F. Wang, J. K. Yang, J. C. Yang, and J. C. Tan, “Analytical model of non-line-of-sight single-scatter propagation,” J. Opt. Soc. Am. A 27, 1505–1509 (2010).
    [CrossRef]
  11. L. J. Wang, Z. Y. Xu, and B. M. Sadler, “Non-line-of-sight ultraviolet link loss in noncoplanar geometry,” Opt. Lett. 35, 1263–1265 (2010).
    [CrossRef]
  12. M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single-scatter propagation model for noncoplanar geometries,” J. Opt. Soc. Am. A 28, 420–428 (2011).
    [CrossRef]
  13. H. W. Yin, S. L. Chang, H. H. Jia, J. K. Yang, and J. C. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26, 2466–2469 (2009).
    [CrossRef]
  14. H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
    [CrossRef]
  15. H. W. Yin, H. H. Jia, H. L. Zhang, X. F. Wang, S. L. Chang, and J. C. Yang, “Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation,” J. Opt. Soc. Am. A 28, 2082–2085 (2011).
    [CrossRef]
  16. M. Bass and V. N. Mahajan, Handbook of Optics, 3rd ed. (McGraw-Hill, 2010), Vol. 1, Chap. 13–14.
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 41–82.
  18. H. C. van der Hulst, Light Scattering by Small Particles(Dover, 1981), pp. 40–59.
  19. H. L. Zhang, H. W. Yin, H. H. Jia, J. C. Yang, and S. L. Chang, “Study of effects of obstacle on non-line-of-sight ultraviolet communication links,” Opt. Express 19, 21216–21226(2011).
    [CrossRef]
  20. H. L. Zhang, H. W. Yin, H. H. Jia, J. C. Yang, and S. L. Chang, “The characterization of non-line-of-sight ultraviolet communication in non-common-scattering volume,” Opt. Commun. 285, 1771–1776 (2012).
    [CrossRef]
  21. D. M. Reilly, Atmospheric Optical Communications in the Middle Ultraviolet (Cambridge, 1976).
  22. W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report (Research Triangle Park, 1980).
  23. B. H. B. Charles, A. Erickson, J. Wilkins, and E. Teppo, “Ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
    [CrossRef]
  24. R. D. Shute, “Electrodeless ultraviolet communications system,” IEEE Aerosp. Electron. Syst. Mag. 10, 2–7 (1995).
    [CrossRef]

2012 (1)

H. L. Zhang, H. W. Yin, H. H. Jia, J. C. Yang, and S. L. Chang, “The characterization of non-line-of-sight ultraviolet communication in non-common-scattering volume,” Opt. Commun. 285, 1771–1776 (2012).
[CrossRef]

2011 (3)

2010 (3)

2009 (3)

2008 (2)

1995 (1)

R. D. Shute, “Electrodeless ultraviolet communications system,” IEEE Aerosp. Electron. Syst. Mag. 10, 2–7 (1995).
[CrossRef]

1994 (1)

B. H. B. Charles, A. Erickson, J. Wilkins, and E. Teppo, “Ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

1991 (1)

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972 (1991).
[CrossRef]

1979 (1)

Bass, M.

M. Bass and V. N. Mahajan, Handbook of Optics, 3rd ed. (McGraw-Hill, 2010), Vol. 1, Chap. 13–14.

Bayse, R.

J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” in Proceedings of the Tactical Communications Conference (IEEE, 1990), pp. 253–267.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 41–82.

Chang, S. L.

Charles, B. H. B.

B. H. B. Charles, A. Erickson, J. Wilkins, and E. Teppo, “Ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Chen, G.

Ding, H. P.

Elshimy, M. A.

Erickson, A.

B. H. B. Charles, A. Erickson, J. Wilkins, and E. Teppo, “Ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Harvey, G. L.

G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report (U. S. Naval Research Laboratory, 1964).

Hranilovic, S.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 41–82.

Jia, H. H.

Junge, D. M.

D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M. S. thesis (Naval Postgraduate School, 1977).

Kennedy, R. S.

W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report (Research Triangle Park, 1980).

Luettgen, M. R.

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972 (1991).
[CrossRef]

Mahajan, V. N.

M. Bass and V. N. Mahajan, Handbook of Optics, 3rd ed. (McGraw-Hill, 2010), Vol. 1, Chap. 13–14.

Majumdar, A. K.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[CrossRef]

Puschell, J. J.

J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” in Proceedings of the Tactical Communications Conference (IEEE, 1990), pp. 253–267.

Reilly, D. M.

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972 (1991).
[CrossRef]

D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470(1979).
[CrossRef]

D. M. Reilly, Atmospheric Optical Communications in the Middle Ultraviolet (Cambridge, 1976).

Ross, W. S.

W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report (Research Triangle Park, 1980).

Sadler, B. M.

Shapiro, J. H.

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972 (1991).
[CrossRef]

Shute, R. D.

R. D. Shute, “Electrodeless ultraviolet communications system,” IEEE Aerosp. Electron. Syst. Mag. 10, 2–7 (1995).
[CrossRef]

Tan, J. C.

Teppo, E.

B. H. B. Charles, A. Erickson, J. Wilkins, and E. Teppo, “Ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

van der Hulst, H. C.

H. C. van der Hulst, Light Scattering by Small Particles(Dover, 1981), pp. 40–59.

Wang, L. J.

Wang, X. F.

Warde, C.

Wilkins, J.

B. H. B. Charles, A. Erickson, J. Wilkins, and E. Teppo, “Ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Xu, Z. Y.

Yang, J. C.

Yang, J. K.

Yin, H. W.

Zhang, H. L.

IEEE Aerosp. Electron. Syst. Mag. (1)

R. D. Shute, “Electrodeless ultraviolet communications system,” IEEE Aerosp. Electron. Syst. Mag. 10, 2–7 (1995).
[CrossRef]

IEEE Commun. Mag. (1)

Z. Y. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[CrossRef]

J. Opt. Soc. Am. (2)

D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470(1979).
[CrossRef]

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972 (1991).
[CrossRef]

J. Opt. Soc. Am. A (4)

Opt. Commun. (1)

H. L. Zhang, H. W. Yin, H. H. Jia, J. C. Yang, and S. L. Chang, “The characterization of non-line-of-sight ultraviolet communication in non-common-scattering volume,” Opt. Commun. 285, 1771–1776 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

B. H. B. Charles, A. Erickson, J. Wilkins, and E. Teppo, “Ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Other (8)

D. M. Reilly, Atmospheric Optical Communications in the Middle Ultraviolet (Cambridge, 1976).

W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report (Research Triangle Park, 1980).

M. Bass and V. N. Mahajan, Handbook of Optics, 3rd ed. (McGraw-Hill, 2010), Vol. 1, Chap. 13–14.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 41–82.

H. C. van der Hulst, Light Scattering by Small Particles(Dover, 1981), pp. 40–59.

G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report (U. S. Naval Research Laboratory, 1964).

D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M. S. thesis (Naval Postgraduate School, 1977).

J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” in Proceedings of the Tactical Communications Conference (IEEE, 1990), pp. 253–267.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

NLOS UV communication link with polarization.

Fig. 2.
Fig. 2.

Received energy intensity for different polarizer and analyzer.

Fig. 3.
Fig. 3.

Degree of polarization versus the transmitter elevation angle.

Fig. 4.
Fig. 4.

Degree of polarization versus the receiver elevation angle.

Fig. 5.
Fig. 5.

Degree of polarization versus the half beam divergence angle of the transmitter.

Fig. 6.
Fig. 6.

Degree of polarization versus the half FOV of the receiver.

Fig. 7.
Fig. 7.

Received energy intensity versus the half FOV of the receiver.

Fig. 8.
Fig. 8.

Degree of polarization versus the range.

Fig. 9.
Fig. 9.

Degree of polarization versus the off-axis angle of the receiver.

Fig. 10.
Fig. 10.

Degree of polarization versus the off-axis angle of the transmitter.

Fig. 11.
Fig. 11.

NLOS UV communication test-bed with polarized multiplexing.

Fig. 12.
Fig. 12.

Measured and simulated relative amplitude when transmitting the datum “0 1”.

Fig. 13.
Fig. 13.

Measured and simulated relative amplitude when transmitting the datum “1 0”.

Fig. 14.
Fig. 14.

Measured and simulated relative amplitude when transmitting the datum “1 1”.

Fig. 15.
Fig. 15.

Measured and simulated SNR when transmitting the datum “1 1”.

Tables (2)

Tables Icon

Table 1. Simulation Parameters

Tables Icon

Table 2. Polarization Multiplexing Applied in UV Communication System

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(S0,S1,S2,S3)T=MRPMRRRM(ψR)[M(θs)RM(ψs)]nMTRMTP(1,0,0,0)T.
RM(ψs)=(10000cos(2ψs)sin(2ψs)00sin(2ψs)cos(2ψs)00001).
M(θs)=ksrksMr(θs)+ksmksMm(θs).

Metrics