Abstract

The intensity distribution of light scattered by a capillary tube filled with a liquid is studied using geometrical optics or ray tracing. Several intensity step points are found in the scattering pattern due to contributions from different geometrical rays. The scattering angles of these intensity step points vary with the capillary parameters, i.e., with the inner and outer radii of the capillary wall and the refractive indices of the liquid and the wall material. The relations between the scattering angles of the step points and the capillary parameters are analyzed using the reflection law and Snell’s law. A method is developed to determine the capillary parameters from measurements of the scattering angles of the step points. An experiment is designed to provide measured data from which the capillary parameters can be obtained by the proposed method. It is shown that this method provides capillary parameters of high precision.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription