Abstract

An ionic polymer metallic composite (IPMC) can perform a bending deformation under an electric field by a small bias voltage. A roughening process is necessary and typically included in the IPMC fabrication. Roughening processes bring several advantages, including better metal adhesion and actuation performance. However, the resulting large surface roughness is an obstacle for optical applications. In this paper, we coated polydimethylsiloxane to improve the surface roughness of IPMC. The improved surface roughness is around 28 nm versus tens of micrometers with an uncoated IPMC. The surface-improved IPMC achieved focusing power of 77 diopters under a 7 V bias voltage. We also found that the lifetime in atmosphere is 30 times longer than that of the nonimproved IPMC. Compared with other popular focusing techniques, such as liquid lenses or micromachined deformable mirrors, the driving voltage is at least one order of magnitude lower and the tunable range is two to three times larger. The effects of the surface-improved fabrication on reflectance, surface scattering, and actuation performance are also discussed. We demonstrate the surface-improved method to construct a patterned IPMC deformable membrane for optical applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  2. B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 227–230.
  3. L. J. Hornbeck, “128×128 deformable mirror device,” IEEE Trans. Electron Devices 30, 539–545 (1983).
    [CrossRef]
  4. M. Séchaud, “Wave-front compensation devices,” in Adaptive Optics in Astronomy, F. Roddier, ed. (Academic, 1999), pp. 57–91.
  5. G.-D. J. Su, Y. Yeh, C. Chiu, C. Li, and T. Chen, “Fabrication and measurement of low-stress polyimide membrane for high-resolution variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 13, 312–315 (2007).
    [CrossRef]
  6. J. Wang, T. Chen, Y. Chien, and G. Su, “Miniature optical autofocus camera by micromachined fluoro-polymer deformable mirror,” Opt. Express 17, 6268–6274 (2009).
    [CrossRef]
  7. M. Shahinpoor and K. J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
    [CrossRef]
  8. M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review,” Smart Mater. Struct. 7, R15–R30 (1998).
    [CrossRef]
  9. B. Bhandari, G. Y. Lee, and S. H. Ahn, “A review on IPMC material as actuators and sensors: fabrications, characteristics and applications,” Int. J. Precis. Eng. Man. 13, 141–163 (2012).
    [CrossRef]
  10. K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, “Bending response of polymer electrolyte actuator,” Proc. SPIE 3987, 121–128 (2000).
    [CrossRef]
  11. K. J. Kim and M. Shahinpoor, “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct. 12, 65–79 (2003).
    [CrossRef]
  12. C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B 117, 367–375 (2006).
    [CrossRef]
  13. B. L. Stoimenov, J. M. Rossitera, and T. Mukaia, “Anisotropic surface roughness enhances bending response of ionic polymer-metal composite (IPMC) artificial muscles,” Proc. SPIE 6413, 641302 (2006).
    [CrossRef]
  14. H.-C. Wei and G.-D. J. Su, “A large-stroke deformable mirror by gear shaped IPMC design,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 113–116.
  15. H. Hsieh, H. Wei, M. Lin, W. Hsu, Y. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18, 11097–11104 (2010).
    [CrossRef]
  16. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
    [CrossRef]
  17. C. C. Yeh and W. P. Shih, “Effects of water content on the actuation performance of ionic polymer-metal composites,” Smart Mater. Struct. 19, 124007 (2010).
    [CrossRef]
  18. J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
    [CrossRef]
  19. L. Feng, Y. Joanne, Y. Marcus, K. Wai, and N. Pui, “Effect of thickness and length of ion polymer metal composites (IPMC) on its actuation properties,” Adv. Mater. Res. 197–198, 401–404 (2011).
    [CrossRef]
  20. M. Bennett, “Ionic liquids as stable solvents for ionic polymer transducers,” Sens. Actuators A 115, 79–90 (2004).
    [CrossRef]
  21. M. Shahinpoor and K. J. Kim, “The effect of surfaceelectrode resistance on the performance of ionic polymermetal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
    [CrossRef]
  22. J. Barramba, J. Silva, and P. Costabranco, “Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators,” Sens. Actuators A 140, 232–238 (2007).
    [CrossRef]

2012

B. Bhandari, G. Y. Lee, and S. H. Ahn, “A review on IPMC material as actuators and sensors: fabrications, characteristics and applications,” Int. J. Precis. Eng. Man. 13, 141–163 (2012).
[CrossRef]

2011

L. Feng, Y. Joanne, Y. Marcus, K. Wai, and N. Pui, “Effect of thickness and length of ion polymer metal composites (IPMC) on its actuation properties,” Adv. Mater. Res. 197–198, 401–404 (2011).
[CrossRef]

2010

C. C. Yeh and W. P. Shih, “Effects of water content on the actuation performance of ionic polymer-metal composites,” Smart Mater. Struct. 19, 124007 (2010).
[CrossRef]

H. Hsieh, H. Wei, M. Lin, W. Hsu, Y. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18, 11097–11104 (2010).
[CrossRef]

2009

2007

G.-D. J. Su, Y. Yeh, C. Chiu, C. Li, and T. Chen, “Fabrication and measurement of low-stress polyimide membrane for high-resolution variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 13, 312–315 (2007).
[CrossRef]

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
[CrossRef]

J. Barramba, J. Silva, and P. Costabranco, “Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators,” Sens. Actuators A 140, 232–238 (2007).
[CrossRef]

2006

C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B 117, 367–375 (2006).
[CrossRef]

B. L. Stoimenov, J. M. Rossitera, and T. Mukaia, “Anisotropic surface roughness enhances bending response of ionic polymer-metal composite (IPMC) artificial muscles,” Proc. SPIE 6413, 641302 (2006).
[CrossRef]

2005

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

2004

M. Bennett, “Ionic liquids as stable solvents for ionic polymer transducers,” Sens. Actuators A 115, 79–90 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

2003

K. J. Kim and M. Shahinpoor, “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct. 12, 65–79 (2003).
[CrossRef]

2000

K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, “Bending response of polymer electrolyte actuator,” Proc. SPIE 3987, 121–128 (2000).
[CrossRef]

M. Shahinpoor and K. J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
[CrossRef]

M. Shahinpoor and K. J. Kim, “The effect of surfaceelectrode resistance on the performance of ionic polymermetal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
[CrossRef]

1998

M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review,” Smart Mater. Struct. 7, R15–R30 (1998).
[CrossRef]

1983

L. J. Hornbeck, “128×128 deformable mirror device,” IEEE Trans. Electron Devices 30, 539–545 (1983).
[CrossRef]

Ahn, S. H.

B. Bhandari, G. Y. Lee, and S. H. Ahn, “A review on IPMC material as actuators and sensors: fabrications, characteristics and applications,” Int. J. Precis. Eng. Man. 13, 141–163 (2012).
[CrossRef]

Asaka, K.

K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, “Bending response of polymer electrolyte actuator,” Proc. SPIE 3987, 121–128 (2000).
[CrossRef]

Bar-Cohen, Y.

M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review,” Smart Mater. Struct. 7, R15–R30 (1998).
[CrossRef]

Barramba, J.

J. Barramba, J. Silva, and P. Costabranco, “Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators,” Sens. Actuators A 140, 232–238 (2007).
[CrossRef]

Bennett, M.

M. Bennett, “Ionic liquids as stable solvents for ionic polymer transducers,” Sens. Actuators A 115, 79–90 (2004).
[CrossRef]

Berge, B.

B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 227–230.

Bhandari, B.

B. Bhandari, G. Y. Lee, and S. H. Ahn, “A review on IPMC material as actuators and sensors: fabrications, characteristics and applications,” Int. J. Precis. Eng. Man. 13, 141–163 (2012).
[CrossRef]

Chen, T.

J. Wang, T. Chen, Y. Chien, and G. Su, “Miniature optical autofocus camera by micromachined fluoro-polymer deformable mirror,” Opt. Express 17, 6268–6274 (2009).
[CrossRef]

G.-D. J. Su, Y. Yeh, C. Chiu, C. Li, and T. Chen, “Fabrication and measurement of low-stress polyimide membrane for high-resolution variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 13, 312–315 (2007).
[CrossRef]

Cheng, Y.

Chien, Y.

Chiu, C.

G.-D. J. Su, Y. Yeh, C. Chiu, C. Li, and T. Chen, “Fabrication and measurement of low-stress polyimide membrane for high-resolution variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 13, 312–315 (2007).
[CrossRef]

Choi, H.

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

Chung, C. K.

C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B 117, 367–375 (2006).
[CrossRef]

Costabranco, P.

J. Barramba, J. Silva, and P. Costabranco, “Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators,” Sens. Actuators A 140, 232–238 (2007).
[CrossRef]

Feng, L.

L. Feng, Y. Joanne, Y. Marcus, K. Wai, and N. Pui, “Effect of thickness and length of ion polymer metal composites (IPMC) on its actuation properties,” Adv. Mater. Res. 197–198, 401–404 (2011).
[CrossRef]

Fox, D. W.

Fujiwara, N.

K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, “Bending response of polymer electrolyte actuator,” Proc. SPIE 3987, 121–128 (2000).
[CrossRef]

Fung, P. K.

C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B 117, 367–375 (2006).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Hong, Y. Z.

C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B 117, 367–375 (2006).
[CrossRef]

Hornbeck, L. J.

L. J. Hornbeck, “128×128 deformable mirror device,” IEEE Trans. Electron Devices 30, 539–545 (1983).
[CrossRef]

Hsieh, H.

Hsu, W.

Jeon, J.

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

Joanne, Y.

L. Feng, Y. Joanne, Y. Marcus, K. Wai, and N. Pui, “Effect of thickness and length of ion polymer metal composites (IPMC) on its actuation properties,” Adv. Mater. Res. 197–198, 401–404 (2011).
[CrossRef]

Ju, M. S.

C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B 117, 367–375 (2006).
[CrossRef]

Jung, K.

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

Kim, K.

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

Kim, K. J.

K. J. Kim and M. Shahinpoor, “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct. 12, 65–79 (2003).
[CrossRef]

M. Shahinpoor and K. J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
[CrossRef]

M. Shahinpoor and K. J. Kim, “The effect of surfaceelectrode resistance on the performance of ionic polymermetal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Lee, G. Y.

B. Bhandari, G. Y. Lee, and S. H. Ahn, “A review on IPMC material as actuators and sensors: fabrications, characteristics and applications,” Int. J. Precis. Eng. Man. 13, 141–163 (2012).
[CrossRef]

Lee, J.

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

Lee, J. H.

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

Lee, Y.

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

Li, C.

G.-D. J. Su, Y. Yeh, C. Chiu, C. Li, and T. Chen, “Fabrication and measurement of low-stress polyimide membrane for high-resolution variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 13, 312–315 (2007).
[CrossRef]

Lin, C. C. K.

C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B 117, 367–375 (2006).
[CrossRef]

Lin, M.

Marcus, Y.

L. Feng, Y. Joanne, Y. Marcus, K. Wai, and N. Pui, “Effect of thickness and length of ion polymer metal composites (IPMC) on its actuation properties,” Adv. Mater. Res. 197–198, 401–404 (2011).
[CrossRef]

Mukaia, T.

B. L. Stoimenov, J. M. Rossitera, and T. Mukaia, “Anisotropic surface roughness enhances bending response of ionic polymer-metal composite (IPMC) artificial muscles,” Proc. SPIE 6413, 641302 (2006).
[CrossRef]

Nam, J.

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

Oguro, K.

K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, “Bending response of polymer electrolyte actuator,” Proc. SPIE 3987, 121–128 (2000).
[CrossRef]

Onishi, K.

K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, “Bending response of polymer electrolyte actuator,” Proc. SPIE 3987, 121–128 (2000).
[CrossRef]

Pui, N.

L. Feng, Y. Joanne, Y. Marcus, K. Wai, and N. Pui, “Effect of thickness and length of ion polymer metal composites (IPMC) on its actuation properties,” Adv. Mater. Res. 197–198, 401–404 (2011).
[CrossRef]

Ren, H.

Rossitera, J. M.

B. L. Stoimenov, J. M. Rossitera, and T. Mukaia, “Anisotropic surface roughness enhances bending response of ionic polymer-metal composite (IPMC) artificial muscles,” Proc. SPIE 6413, 641302 (2006).
[CrossRef]

Séchaud, M.

M. Séchaud, “Wave-front compensation devices,” in Adaptive Optics in Astronomy, F. Roddier, ed. (Academic, 1999), pp. 57–91.

Sewa, S.

K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, “Bending response of polymer electrolyte actuator,” Proc. SPIE 3987, 121–128 (2000).
[CrossRef]

Shahinpoor, M.

K. J. Kim and M. Shahinpoor, “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct. 12, 65–79 (2003).
[CrossRef]

M. Shahinpoor and K. J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
[CrossRef]

M. Shahinpoor and K. J. Kim, “The effect of surfaceelectrode resistance on the performance of ionic polymermetal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
[CrossRef]

M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review,” Smart Mater. Struct. 7, R15–R30 (1998).
[CrossRef]

Shih, W. P.

C. C. Yeh and W. P. Shih, “Effects of water content on the actuation performance of ionic polymer-metal composites,” Smart Mater. Struct. 19, 124007 (2010).
[CrossRef]

Silva, J.

J. Barramba, J. Silva, and P. Costabranco, “Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators,” Sens. Actuators A 140, 232–238 (2007).
[CrossRef]

Simpson, J. O.

M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review,” Smart Mater. Struct. 7, R15–R30 (1998).
[CrossRef]

Smith, J.

M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review,” Smart Mater. Struct. 7, R15–R30 (1998).
[CrossRef]

Stoimenov, B. L.

B. L. Stoimenov, J. M. Rossitera, and T. Mukaia, “Anisotropic surface roughness enhances bending response of ionic polymer-metal composite (IPMC) artificial muscles,” Proc. SPIE 6413, 641302 (2006).
[CrossRef]

Su, G.

Su, G.-D. J.

H. Hsieh, H. Wei, M. Lin, W. Hsu, Y. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18, 11097–11104 (2010).
[CrossRef]

G.-D. J. Su, Y. Yeh, C. Chiu, C. Li, and T. Chen, “Fabrication and measurement of low-stress polyimide membrane for high-resolution variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 13, 312–315 (2007).
[CrossRef]

H.-C. Wei and G.-D. J. Su, “A large-stroke deformable mirror by gear shaped IPMC design,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 113–116.

Tak, Y.

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

Wai, K.

L. Feng, Y. Joanne, Y. Marcus, K. Wai, and N. Pui, “Effect of thickness and length of ion polymer metal composites (IPMC) on its actuation properties,” Adv. Mater. Res. 197–198, 401–404 (2011).
[CrossRef]

Wang, J.

Wei, H.

Wei, H.-C.

H.-C. Wei and G.-D. J. Su, “A large-stroke deformable mirror by gear shaped IPMC design,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 113–116.

Wu, B.

Wu, S. T.

Wu, T. C.

C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B 117, 367–375 (2006).
[CrossRef]

Yeh, C. C.

C. C. Yeh and W. P. Shih, “Effects of water content on the actuation performance of ionic polymer-metal composites,” Smart Mater. Struct. 19, 124007 (2010).
[CrossRef]

Yeh, Y.

G.-D. J. Su, Y. Yeh, C. Chiu, C. Li, and T. Chen, “Fabrication and measurement of low-stress polyimide membrane for high-resolution variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 13, 312–315 (2007).
[CrossRef]

Adv. Mater. Res.

L. Feng, Y. Joanne, Y. Marcus, K. Wai, and N. Pui, “Effect of thickness and length of ion polymer metal composites (IPMC) on its actuation properties,” Adv. Mater. Res. 197–198, 401–404 (2011).
[CrossRef]

Appl. Phys. Lett.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

G.-D. J. Su, Y. Yeh, C. Chiu, C. Li, and T. Chen, “Fabrication and measurement of low-stress polyimide membrane for high-resolution variable optical attenuator,” IEEE J. Sel. Top. Quantum Electron. 13, 312–315 (2007).
[CrossRef]

IEEE Trans. Electron Devices

L. J. Hornbeck, “128×128 deformable mirror device,” IEEE Trans. Electron Devices 30, 539–545 (1983).
[CrossRef]

Int. J. Precis. Eng. Man.

B. Bhandari, G. Y. Lee, and S. H. Ahn, “A review on IPMC material as actuators and sensors: fabrications, characteristics and applications,” Int. J. Precis. Eng. Man. 13, 141–163 (2012).
[CrossRef]

Opt. Express

Proc. SPIE

K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, “Bending response of polymer electrolyte actuator,” Proc. SPIE 3987, 121–128 (2000).
[CrossRef]

B. L. Stoimenov, J. M. Rossitera, and T. Mukaia, “Anisotropic surface roughness enhances bending response of ionic polymer-metal composite (IPMC) artificial muscles,” Proc. SPIE 6413, 641302 (2006).
[CrossRef]

Sens. Actuators A

J. Lee, J. H. Lee, J. Nam, H. Choi, K. Jung, J. Jeon, Y. Lee, K. Kim, and Y. Tak, “Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator,” Sens. Actuators A 118, 98–106 (2005).
[CrossRef]

M. Bennett, “Ionic liquids as stable solvents for ionic polymer transducers,” Sens. Actuators A 115, 79–90 (2004).
[CrossRef]

J. Barramba, J. Silva, and P. Costabranco, “Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators,” Sens. Actuators A 140, 232–238 (2007).
[CrossRef]

Sens. Actuators B

C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B 117, 367–375 (2006).
[CrossRef]

Smart Mater. Struct.

C. C. Yeh and W. P. Shih, “Effects of water content on the actuation performance of ionic polymer-metal composites,” Smart Mater. Struct. 19, 124007 (2010).
[CrossRef]

K. J. Kim and M. Shahinpoor, “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct. 12, 65–79 (2003).
[CrossRef]

M. Shahinpoor and K. J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
[CrossRef]

M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review,” Smart Mater. Struct. 7, R15–R30 (1998).
[CrossRef]

M. Shahinpoor and K. J. Kim, “The effect of surfaceelectrode resistance on the performance of ionic polymermetal composite (IPMC) artificial muscles,” Smart Mater. Struct. 9, 543–551 (2000).
[CrossRef]

Other

M. Séchaud, “Wave-front compensation devices,” in Adaptive Optics in Astronomy, F. Roddier, ed. (Academic, 1999), pp. 57–91.

B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 227–230.

H.-C. Wei and G.-D. J. Su, “A large-stroke deformable mirror by gear shaped IPMC design,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2011), pp. 113–116.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic illustration of the actuation mechanism of the IPMC. (a) When no voltage is applied, the cations and water molecules are randomly distributed in the IPMC film. (b) When applying a voltage, the hydrated cations are dragged toward the cathode, and the resulting volume difference between the two sides leads to the bending behavior toward the anode.

Fig. 2.
Fig. 2.

(a) Gear-shaped IPMC design and (b) simulation result [14].

Fig. 3.
Fig. 3.

Schematic of the surface-improved IPMC fabrication flow.

Fig. 4.
Fig. 4.

(a) Plastic fixtures and fabrication flow of the gear-shaped IPMC deformable mirror and (b) a photograph of a final fabricated device.

Fig. 5.
Fig. 5.

OM images of the surface of (a) a conventional IPMC and (b) the surface-improved IPMC.

Fig. 6.
Fig. 6.

Top and cross-section view SEM images of (a), (b) a conventional IPMC and (c), (d) the surface-improved IPMC.

Fig. 7.
Fig. 7.

AFM images of (a) a conventional IPMC and (b) the surface-improved IPMC.

Fig. 8.
Fig. 8.

(a) Rspec spectrum, (b) Rtotal spectrum, and (c) Rspec/Rtotal spectrum.

Fig. 9.
Fig. 9.

(a) White-light interference microscope image of the central area of an actuated IPMC DM and (b) cross-sectional profile fitting indicating a near-circular shape.

Fig. 10.
Fig. 10.

632 nm laser beam spots reflected from a nonactuated and an actuated IPMC DM surface, and their intensity profiles.

Fig. 11.
Fig. 11.

Reflected light intensity response corresponding to a 5 V step input voltage.

Fig. 12.
Fig. 12.

Illustration of the optical power derivation from displacement.

Fig. 13.
Fig. 13.

Maximum displacement of the central area of the patterned IPMC DM and the corresponding optical power under varying applied voltage.

Fig. 14.
Fig. 14.

Duration of the conventional IPMC and the surface-improved IPMC in air.

Tables (1)

Tables Icon

Table 1. Comparisons of the Operating Voltage and the Corresponding Optical Power Change among Several Kinds of Focus-Changing Techniques

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

NaBH4+4[Pt(NH3)4]2++8OH4Pt0+16NH3(g)+NaBO2+6H2O.
rc=2f=h2+(D2)22h,
P=1f=4hh2+(D2)2.

Metrics