Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polydimethylsiloxane coating on an ionic polymer metallic composite for a tunable focusing mirror

Not Accessible

Your library or personal account may give you access

Abstract

An ionic polymer metallic composite (IPMC) can perform a bending deformation under an electric field by a small bias voltage. A roughening process is necessary and typically included in the IPMC fabrication. Roughening processes bring several advantages, including better metal adhesion and actuation performance. However, the resulting large surface roughness is an obstacle for optical applications. In this paper, we coated polydimethylsiloxane to improve the surface roughness of IPMC. The improved surface roughness is around 28 nm versus tens of micrometers with an uncoated IPMC. The surface-improved IPMC achieved focusing power of 77 diopters under a 7 V bias voltage. We also found that the lifetime in atmosphere is 30 times longer than that of the nonimproved IPMC. Compared with other popular focusing techniques, such as liquid lenses or micromachined deformable mirrors, the driving voltage is at least one order of magnitude lower and the tunable range is two to three times larger. The effects of the surface-improved fabrication on reflectance, surface scattering, and actuation performance are also discussed. We demonstrate the surface-improved method to construct a patterned IPMC deformable membrane for optical applications.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Ionic polymer metal composite for an optical zoom in a compact camera

Wei-Hsiang Chen, Jia-Shiun Lu, and Guo-Dung John Su
Opt. Express 23(10) 13265-13277 (2015)

Voltage-controlled accommodating IOL system using an ion polymer metal composite actuator

Tetsuya Horiuchi, Toshifumi Mihashi, Takashi Fujikado, Tetsuro Oshika, and Kinji Asaka
Opt. Express 24(20) 23280-23288 (2016)

Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography

Yuli Wang, Mark Bachman, Guann-Pyng Li, Shuguang Guo, Brian J. F. Wong, and Zhongping Chen
Opt. Lett. 30(1) 53-55 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved