Abstract

To estimate the acoustic plasma energy in laser-induced breakdown spectroscopy (LIBS) experiments, a light collecting and acoustic sensing device based on a coil of plastic optical fiber (POF) is proposed. The speckle perturbation induced by the plasma acoustic energy was monitored using a CCD camera placed at the end of a coil of multimode POF and processed with an intraimage contrast ratio method. The results were successfully verified with the acoustic energy measured by a reference microphone. The proposed device is useful for normalizing LIBS spectra, enabling a better estimation of the sample’s chemical composition.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  2. R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G. S. Senesi, and A. de Giacomo, “Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
    [CrossRef]
  3. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012).
    [CrossRef]
  4. C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
    [CrossRef]
  5. F. R. Doucet, T. F. Belliveau, J. L. Fortier, and J. Hubert, “Use of chemometrics and laser-induced breakdown spectroscopy for quantitative analysis of major and minor elements in aluminum alloys,” Appl. Spectrosc. 61, 327–332 (2007).
    [CrossRef]
  6. B. C. Castle, K. Talabardon, B. W. Smith, and J. D. Winefordner, “Variables influencing the precision of laser-induced breakdown spectroscopy measurements,” Appl. Spectrosc. 52, 649–657 (1998).
    [CrossRef]
  7. H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta B: At. Spectrosc. 66, 179–185 (2011).
    [CrossRef]
  8. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
    [CrossRef]
  9. V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
    [CrossRef]
  10. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B: At. Spectrosc. 65, 1–14 (2010).
    [CrossRef]
  11. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction,” Spectrochim. Acta B: At. Spectrosc. 65, 642–657 (2010).
    [CrossRef]
  12. E. F. Runge, R. W. Minck, and F. R. Bryan, “Spectrochemical analysis using a pulsed laser source,” Spectrochim. Acta 20, 733–736 (1964).
    [CrossRef]
  13. S. Palanco and J. Laserna, “Spectral analysis of the acoustic emission of laser-produced plasmas,” Appl. Opt. 42, 6078–6084 (2003).
    [CrossRef]
  14. A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
    [CrossRef]
  15. S. Conesa, S. Palanco, and J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta B: At. Spectrosc. 59, 1395–1401 (2004).
    [CrossRef]
  16. W. B. Spillman, B. R. Kline, L. B. Maurice, and P. L. Fuhr, “Statistical-mode sensor for fiber optic vibration sensing uses,” Appl. Opt. 28, 3166–3176 (1989).
    [CrossRef]
  17. A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010).
    [CrossRef]
  18. C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter, and G. Holl, “Fiber-optic laser sensor for mine detection and verification,” Appl. Opt. 45, 3817–3825 (2006).
    [CrossRef]
  19. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
    [CrossRef]
  20. P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
    [CrossRef]
  21. F. Anabitarte, L. Rodriguez-Cobo, M. Lomer, J. Mirapeix, J. M. Lopez-Higuera, and A. Cobo, “Laser induced breakdown spectroscopy light collector based on coiled plastic optical fiber,” in Proceedings of the 20th International Conference on Plastic Optical Fibers, Bilbao, Spain, 14 September 2011 (International Cooperative of Plastic Optical Fiber, 2011), pp. 315–319.
  22. G. Aldabaldetreku, I. Bikandi, M. A. Illarramendi, G. Durana, and J. Zubia, “A comprehensive analysis of scattering in polymer optical fibers,” Opt. Express 18, 24536–24555 (2010).
    [CrossRef]
  23. G. Hernán Sendra, “Activity analysis on dynamic speckle patterns (Análisis de actividad en patrones de speckle dinámico),” Ph.D. thesis (Universidad Nacional de Mar de Plata, 2009).
  24. R. Arizaga, M. Trivi, and H. Rabal, “Speckle time evolution characterization by the cooccurrence matrix analysis,” Opt. Laser Technol. 31, 163–169 (1999).
    [CrossRef]
  25. J. A. Aguilera, J. Bengoechea, and C. Aragón, “Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances,” Spectrochim. Acta B: At. Spectrosc. 59, 461–469 (2004).
    [CrossRef]
  26. C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, “Properties of plastic optical fibers,” J. Opt. Soc. Am. B 15, 727–739 (1998).
    [CrossRef]
  27. C. Stauter, P. Gerard, J. Fontaine, and T. Engel, “Laser ablation acoustical monitoring,” in Symposium H on Laser Processing of Surfaces and Thin Films of the 1996 E-MRS Spring Conference, Amsterdam (Elsevier, 1997), pp. 174–178.

2012 (1)

2011 (1)

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta B: At. Spectrosc. 66, 179–185 (2011).
[CrossRef]

2010 (6)

R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G. S. Senesi, and A. de Giacomo, “Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B: At. Spectrosc. 65, 1–14 (2010).
[CrossRef]

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction,” Spectrochim. Acta B: At. Spectrosc. 65, 642–657 (2010).
[CrossRef]

A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010).
[CrossRef]

G. Aldabaldetreku, I. Bikandi, M. A. Illarramendi, G. Durana, and J. Zubia, “A comprehensive analysis of scattering in polymer optical fibers,” Opt. Express 18, 24536–24555 (2010).
[CrossRef]

2009 (1)

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

2007 (2)

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

F. R. Doucet, T. F. Belliveau, J. L. Fortier, and J. Hubert, “Use of chemometrics and laser-induced breakdown spectroscopy for quantitative analysis of major and minor elements in aluminum alloys,” Appl. Spectrosc. 61, 327–332 (2007).
[CrossRef]

2006 (1)

2005 (1)

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
[CrossRef]

2004 (3)

S. Conesa, S. Palanco, and J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta B: At. Spectrosc. 59, 1395–1401 (2004).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances,” Spectrochim. Acta B: At. Spectrosc. 59, 461–469 (2004).
[CrossRef]

2003 (1)

1999 (1)

R. Arizaga, M. Trivi, and H. Rabal, “Speckle time evolution characterization by the cooccurrence matrix analysis,” Opt. Laser Technol. 31, 163–169 (1999).
[CrossRef]

1998 (2)

1997 (1)

C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

1989 (1)

1964 (1)

E. F. Runge, R. W. Minck, and F. R. Bryan, “Spectrochemical analysis using a pulsed laser source,” Spectrochim. Acta 20, 733–736 (1964).
[CrossRef]

Aguilera, J. A.

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances,” Spectrochim. Acta B: At. Spectrosc. 59, 461–469 (2004).
[CrossRef]

Aldabaldetreku, G.

Anabitarte, F.

F. Anabitarte, L. Rodriguez-Cobo, M. Lomer, J. Mirapeix, J. M. Lopez-Higuera, and A. Cobo, “Laser induced breakdown spectroscopy light collector based on coiled plastic optical fiber,” in Proceedings of the 20th International Conference on Plastic Optical Fibers, Bilbao, Spain, 14 September 2011 (International Cooperative of Plastic Optical Fiber, 2011), pp. 315–319.

Andre, N.

C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Aragón, C.

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances,” Spectrochim. Acta B: At. Spectrosc. 59, 461–469 (2004).
[CrossRef]

Arizaga, R.

R. Arizaga, M. Trivi, and H. Rabal, “Speckle time evolution characterization by the cooccurrence matrix analysis,” Opt. Laser Technol. 31, 163–169 (1999).
[CrossRef]

Belliveau, T. F.

Bengoechea, J.

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances,” Spectrochim. Acta B: At. Spectrosc. 59, 461–469 (2004).
[CrossRef]

Bikandi, I.

Bohling, C.

Bryan, F. R.

E. F. Runge, R. W. Minck, and F. R. Bryan, “Spectrochemical analysis using a pulsed laser source,” Spectrochim. Acta 20, 733–736 (1964).
[CrossRef]

Bunkin, A. F.

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

Castle, B. C.

Chaleard, C.

C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Chen, W. D.

Cobo, A.

F. Anabitarte, L. Rodriguez-Cobo, M. Lomer, J. Mirapeix, J. M. Lopez-Higuera, and A. Cobo, “Laser induced breakdown spectroscopy light collector based on coiled plastic optical fiber,” in Proceedings of the 20th International Conference on Plastic Optical Fibers, Bilbao, Spain, 14 September 2011 (International Cooperative of Plastic Optical Fiber, 2011), pp. 315–319.

Conesa, S.

S. Conesa, S. Palanco, and J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta B: At. Spectrosc. 59, 1395–1401 (2004).
[CrossRef]

Corsi, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cristoforetti, G.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B: At. Spectrosc. 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Ctvrtnícková, T.

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

de Giacomo, A.

R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G. S. Senesi, and A. de Giacomo, “Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

de Pascale, O.

R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G. S. Senesi, and A. de Giacomo, “Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

Dell’Aglio, M.

R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G. S. Senesi, and A. de Giacomo, “Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

Dixon, P. B.

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
[CrossRef]

Doucet, F. R.

Durana, G.

Engel, T.

C. Stauter, P. Gerard, J. Fontaine, and T. Engel, “Laser ablation acoustical monitoring,” in Symposium H on Laser Processing of Surfaces and Thin Films of the 1996 E-MRS Spring Conference, Amsterdam (Elsevier, 1997), pp. 174–178.

Fontaine, J.

C. Stauter, P. Gerard, J. Fontaine, and T. Engel, “Laser ablation acoustical monitoring,” in Symposium H on Laser Processing of Surfaces and Thin Films of the 1996 E-MRS Spring Conference, Amsterdam (Elsevier, 1997), pp. 174–178.

Fortier, J. L.

Fuhr, P. L.

Galiová, M.

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Garito, A. F.

Gaudiuso, R.

R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G. S. Senesi, and A. de Giacomo, “Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

Geertsen, C.

C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Gerard, P.

C. Stauter, P. Gerard, J. Fontaine, and T. Engel, “Laser ablation acoustical monitoring,” in Symposium H on Laser Processing of Surfaces and Thin Films of the 1996 E-MRS Spring Conference, Amsterdam (Elsevier, 1997), pp. 174–178.

Giuffrida, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Gorbatenko, A. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction,” Spectrochim. Acta B: At. Spectrosc. 65, 642–657 (2010).
[CrossRef]

Gornushkin, I.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012).
[CrossRef]

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta B: At. Spectrosc. 66, 179–185 (2011).
[CrossRef]

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
[CrossRef]

Hidalgo, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Hohmann, K.

Holl, G.

Hrdlicka, A.

A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010).
[CrossRef]

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Hubert, J.

Illarramendi, M. A.

Kaiser, J.

A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010).
[CrossRef]

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Kanický, V.

A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010).
[CrossRef]

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Kline, B. R.

Koeppen, C.

Krásenský, P.

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Labutin, T. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction,” Spectrochim. Acta B: At. Spectrosc. 65, 642–657 (2010).
[CrossRef]

Lacour,

C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Laserna, J.

Laserna, J. J.

S. Conesa, S. Palanco, and J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta B: At. Spectrosc. 59, 1395–1401 (2004).
[CrossRef]

Lednev, V.

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

Legnaioli, S.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B: At. Spectrosc. 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Lindner, H.

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta B: At. Spectrosc. 66, 179–185 (2011).
[CrossRef]

Lomer, M.

F. Anabitarte, L. Rodriguez-Cobo, M. Lomer, J. Mirapeix, J. M. Lopez-Higuera, and A. Cobo, “Laser induced breakdown spectroscopy light collector based on coiled plastic optical fiber,” in Proceedings of the 20th International Conference on Plastic Optical Fibers, Bilbao, Spain, 14 September 2011 (International Cooperative of Plastic Optical Fiber, 2011), pp. 315–319.

Loper, K. H.

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta B: At. Spectrosc. 66, 179–185 (2011).
[CrossRef]

Lopez-Higuera, J. M.

F. Anabitarte, L. Rodriguez-Cobo, M. Lomer, J. Mirapeix, J. M. Lopez-Higuera, and A. Cobo, “Laser induced breakdown spectroscopy light collector based on coiled plastic optical fiber,” in Proceedings of the 20th International Conference on Plastic Optical Fibers, Bilbao, Spain, 14 September 2011 (International Cooperative of Plastic Optical Fiber, 2011), pp. 315–319.

Malina, R.

A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010).
[CrossRef]

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Mauchien, P.

C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Maurice, L. B.

Minck, R. W.

E. F. Runge, R. W. Minck, and F. R. Bryan, “Spectrochemical analysis using a pulsed laser source,” Spectrochim. Acta 20, 733–736 (1964).
[CrossRef]

Mirapeix, J.

F. Anabitarte, L. Rodriguez-Cobo, M. Lomer, J. Mirapeix, J. M. Lopez-Higuera, and A. Cobo, “Laser induced breakdown spectroscopy light collector based on coiled plastic optical fiber,” in Proceedings of the 20th International Conference on Plastic Optical Fibers, Bilbao, Spain, 14 September 2011 (International Cooperative of Plastic Optical Fiber, 2011), pp. 315–319.

Mueller, M.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

Niemax, K.

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta B: At. Spectrosc. 66, 179–185 (2011).
[CrossRef]

Novotný, J.

Novotný, K.

A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010).
[CrossRef]

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Omenetto, N.

Otruba, V.

A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010).
[CrossRef]

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Palanco, S.

S. Conesa, S. Palanco, and J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta B: At. Spectrosc. 59, 1395–1401 (2004).
[CrossRef]

S. Palanco and J. Laserna, “Spectral analysis of the acoustic emission of laser-produced plasmas,” Appl. Opt. 42, 6078–6084 (2003).
[CrossRef]

Páleníková, K.

A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010).
[CrossRef]

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Palleschi, V.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B: At. Spectrosc. 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Panne, U.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

Pershin, S. M.

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

Popov, A. M.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction,” Spectrochim. Acta B: At. Spectrosc. 65, 642–657 (2010).
[CrossRef]

Prokes, L.

Rabal, H.

R. Arizaga, M. Trivi, and H. Rabal, “Speckle time evolution characterization by the cooccurrence matrix analysis,” Opt. Laser Technol. 31, 163–169 (1999).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Reuter, M.

Rodriguez-Cobo, L.

F. Anabitarte, L. Rodriguez-Cobo, M. Lomer, J. Mirapeix, J. M. Lopez-Higuera, and A. Cobo, “Laser induced breakdown spectroscopy light collector based on coiled plastic optical fiber,” in Proceedings of the 20th International Conference on Plastic Optical Fibers, Bilbao, Spain, 14 September 2011 (International Cooperative of Plastic Optical Fiber, 2011), pp. 315–319.

Runge, E. F.

E. F. Runge, R. W. Minck, and F. R. Bryan, “Spectrochemical analysis using a pulsed laser source,” Spectrochim. Acta 20, 733–736 (1964).
[CrossRef]

Salvetti, A.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Schade, W.

Scheel, D.

Sendra, G. Hernán

G. Hernán Sendra, “Activity analysis on dynamic speckle patterns (Análisis de actividad en patrones de speckle dinámico),” Ph.D. thesis (Universidad Nacional de Mar de Plata, 2009).

Senesi, G. S.

R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G. S. Senesi, and A. de Giacomo, “Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

Shi, R. F.

Smith, B. W.

Spillman, W. B.

Stanková, A.

Stauter, C.

C. Stauter, P. Gerard, J. Fontaine, and T. Engel, “Laser ablation acoustical monitoring,” in Symposium H on Laser Processing of Surfaces and Thin Films of the 1996 E-MRS Spring Conference, Amsterdam (Elsevier, 1997), pp. 174–178.

Talabardon, K.

Tognoni, E.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B: At. Spectrosc. 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Trivi, M.

R. Arizaga, M. Trivi, and H. Rabal, “Speckle time evolution characterization by the cooccurrence matrix analysis,” Opt. Laser Technol. 31, 163–169 (1999).
[CrossRef]

Uebbing, J. L.

C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

Vallebona, C.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Vitesníková, A.

Winefordner, J. D.

Zaorálková, L.

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

Zorov, N. B.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction,” Spectrochim. Acta B: At. Spectrosc. 65, 642–657 (2010).
[CrossRef]

Zubia, J.

Anal. Chem. (1)

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (3)

J. Anal. At. Spectrom. (2)

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[CrossRef]

C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Laser Technol. (1)

R. Arizaga, M. Trivi, and H. Rabal, “Speckle time evolution characterization by the cooccurrence matrix analysis,” Opt. Laser Technol. 31, 163–169 (1999).
[CrossRef]

Sensors (1)

R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G. S. Senesi, and A. de Giacomo, “Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

Spectrochim. Acta (1)

E. F. Runge, R. W. Minck, and F. R. Bryan, “Spectrochemical analysis using a pulsed laser source,” Spectrochim. Acta 20, 733–736 (1964).
[CrossRef]

Spectrochim. Acta B: At. Spectrosc. (7)

A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009).
[CrossRef]

S. Conesa, S. Palanco, and J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta B: At. Spectrosc. 59, 1395–1401 (2004).
[CrossRef]

H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta B: At. Spectrosc. 66, 179–185 (2011).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007).
[CrossRef]

J. A. Aguilera, J. Bengoechea, and C. Aragón, “Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances,” Spectrochim. Acta B: At. Spectrosc. 59, 461–469 (2004).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B: At. Spectrosc. 65, 1–14 (2010).
[CrossRef]

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction,” Spectrochim. Acta B: At. Spectrosc. 65, 642–657 (2010).
[CrossRef]

Spectrochimic Acta B: At. Spectrosc. (1)

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004).
[CrossRef]

Other (4)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

F. Anabitarte, L. Rodriguez-Cobo, M. Lomer, J. Mirapeix, J. M. Lopez-Higuera, and A. Cobo, “Laser induced breakdown spectroscopy light collector based on coiled plastic optical fiber,” in Proceedings of the 20th International Conference on Plastic Optical Fibers, Bilbao, Spain, 14 September 2011 (International Cooperative of Plastic Optical Fiber, 2011), pp. 315–319.

G. Hernán Sendra, “Activity analysis on dynamic speckle patterns (Análisis de actividad en patrones de speckle dinámico),” Ph.D. thesis (Universidad Nacional de Mar de Plata, 2009).

C. Stauter, P. Gerard, J. Fontaine, and T. Engel, “Laser ablation acoustical monitoring,” in Symposium H on Laser Processing of Surfaces and Thin Films of the 1996 E-MRS Spring Conference, Amsterdam (Elsevier, 1997), pp. 174–178.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Sensor device based on a coiled plastic optical fiber (POF) for simultaneously collecting the light emission from the plasma and detecting its acoustic shockwave.

Fig. 2.
Fig. 2.

Spectra from the LIBS plasma captured by a standard volume optics setup (dashed curve) and the proposed coiled plastic optical fiber (solid curve).

Fig. 3.
Fig. 3.

Light capturing efficiency of the coiled plastic optical fiber for different horizontal positions decentered from the plasma plume (left), and for different vertical distances from the sample’s surface (right).

Fig. 4.
Fig. 4.

Acoustic pulse from the reference microphone showing the speckle images obtained (a) before, (b) during, and (c) 10 ms after the laser shot.

Fig. 5.
Fig. 5.

Acoustic energy estimation (a) from the reference microphone from and the speckle pattern analysis using the proposed processing schemes of (b) contrast, (c) differential, and (d) MoICO.

Fig. 6.
Fig. 6.

Plasma emission spectra at three different laser energies.

Fig. 7.
Fig. 7.

Ratio of three pairs of emission line intensities against the laser pulse energy.

Fig. 8.
Fig. 8.

Normalization capability of the acoustic signal (contrast processing of the speckle images) for two emission lines of copper (left) and zinc (right).

Metrics